GOVERNMENT OF THE DISTRICT OF COLUMBIA DEPARTMENT OF GENERAL SERVICES

Addendum No. 4 To Request for Proposals ("RFP") No. DCAM-21-CS-RFP-0002 Construction Management At-Risk ("CMAR") Services for Therapeutic Recreation Center

Issued: March 1, 2021

This Addendum No. 4 is issued on March 1, 2021. Except as modified hereby, the RFP remains unmodified.

Item #1. The questions and answers spreadsheet is hereby attached as **Exhibit 1**.

Item #2. Site visit's sign-in sheet and business cards are hereby attached as Exhibit 2.

Item #3. The Geotechnical report is hereby attached as Exhibit 3.

Item #4: The Proposals' due date is hereby extended to March 11, 2021 at 2:00 P.M.

Item #5. Section 5.2 of the RFP (Delivery or Mailing of Submission) is hereby revised as follows:

Pursuant to the current District of Columbia Government, State of Emergency executive order signed by Mayor Muriel Bowser on March 11, 2020 in response to the current SARS-CoV-2 (COVID-19) Coronavirus-19 Pandemic, all bids *shall be submitted electronically* on the bids submission due date, March 11, 2021 no later than 2:00 P.M. EST sharp, via email to the following individuals:

Pamela Ford Dickerson Contracting Officer Email: <u>pamela.dickerson@dc.gov</u>

Contract Specialist: Ahmad Stanekzai Email: <u>ahmad.stanekzai@dc.gov</u>

Item #6. The Contracting Officer is hereby replaced as follows:

Pamela Ford Dickerson Contracting Officer Contracts and Procurement Divisions Department of General Services 2000 14th Street, NW 4th Floor Washington, DC 20009 Desk: 202.576.5596 Email: <u>Pamela.dickerson@dc.gov</u> **Item #7.** Section H. Certificate of Insurance (Part 8 – Insurance Requirements) is hereby revised as follows:

The Contractor shall submit certificates of insurance giving evidence of the required coverage as specified in this section prior to commencing work. Certificates of insurance must reference the corresponding contract number. Evidence of insurance shall be submitted to:

The Government of the District of Columbia

And mailed to the attention of: Pamela Ford Dickerson Contracting Officer Contracting & Procurement Division Department of General Services 2000 14th Street, NW 4th Floor Washington, DC 20009 Desk: 202.576.5596 Email: <u>Pamela.dickerson@dc.gov</u>

Item #8. Section 1.7of the RFP (Department Designated Point of Contact) is hereby revised as follows:

The Department's sole point of contact ("POC") for matters related to this RFP is the only individual authorized to discuss this RFP with any interested parties, including Offerors. All communications with the Department's POC about the Project or this RFP shall be sent in writing to:

Name: Ahmad Stanekzai Title: Contract Specialist Department of General Services Contracts and Procurement Division 2000 14th Street, NW 4th Floor Washington, DC 20009 E: <u>ahmad.stanekzai@dc.gov</u>

Item #9. The Form of Offer Letter and Bid Form (Attachment B to the RFP) is hereby revised and attached as <u>Exhibit 4</u>.

Item #10. Item (iv) of Section 3.4.3 (of the RFP) is hereby deleted.

Item #11. Item Nos. a and b of Section 2.11.4 Award Fee Determination (of the RFP) is hereby revised as follows:

a) If the GMP is agreed upon by the CMAR and the Department on or before September 24, 2021, the CMAR shall earn twenty five percent (25%) of the At-Risk Portion of the Construction Management Fee.

b) The CMAR shall earn twenty five percent (25%) of the At-Risk Portion of the Construction Management Fee if the Project is Substantially Complete on or before December 5, 2022.

Item #12. Section 1.6 (of the RFP) Project Delivery Method is hereby revised as follows:

The Department intends to implement the Project through a construction management at-risk approach. The scope of work for the Project ("Scope of Work") will be divided into two phases: (i) Preconstruction Phase; and (ii) the Construction Phase. As explained above, the Construction Phase will be completed in two phases: razing of the existing recreation center facility and completion of the site work ("Phase 1"); and construction of the new recreation center facility and associated sitework. ("Phase 2").

During the Preconstruction Phase, the selected CMAR will be required to work with the Architect to develop a schedule, budget and design that accomplishes the Department's goals and objectives. The CMAR will be required to actively participate in the development of the construction documents by providing cost estimating, scheduling, identifying long-lead purchasing items and performing constructability reviews. The Department expects that the GMP/permit documents will be completed by **April 2021** at which point the CMAR will be required to obtain quotes from trade subcontractors and provide a GMP based on the approved set of documents. The process by which the GMP will be formed is more fully described in the Form of Contract which will be issued by addendum.

The Project needs to be completed and available for occupancy by DPR no later than the Substantial Completion Date noted in **Section 1.5** above. The Department contemplates that construction will begin in Summer 2021. Abatement, razing, selective demolition, tree protection/remediation work, site enablement and other long lead items may be released earlier, if necessary.

Item #13. Section1.9.2 (of the RFP) Project Schedule is hereby revised as follows:

Further, The Department has established the following milestones for the Project, and Offerors shall base their Proposals on such milestones.

1.9.2.1 Substantial Completion Date shall be no later than the date set forth in **Section 1.5**; and **1.9.2.2** If an Offeror proposes a Substantial Completion Date earlier than that shown in **Part 1**, **Section 1.5**, and the Department agrees to such proposed date, such proposed date will be deemed by the Department as the contractual Substantial Completion Date for the Agreement for all purposes, including liquidated damages.

Project Schedule			
Submit Baseline Schedule	April 16, 2021		
Complete GMP Bid Set (by A/E)	July 1, 2021		
Complete Trade Bidding	August 2, 2021		
GMP Proposed Submitted	August 23, 2021		
VE/GMP Negotiations Completed	September 20, 2021		
Finalize GMP	September 24, 2021		
Council Approved of GMP	November 1, 2021		
Project Substantial Complete	December 5, 2022		

Item #14. Section 4.4 Special Provisions related to COVID-19 Emergency is hereby incorporated into the RFP as follows:

- a) Notwithstanding Sections 4.1 and 4.1.1 Subcontracting Plan and Mandatory Subcontracting Requirements, for all contracts in excess of \$250,000 that are unrelated to the District's response to the COVID-19 emergency but entered into during the COVID-19 emergency, absent a waiver pursuant to D.C. Official Code § 2-218.51, at least 50% of the dollar volume ("CBE minimum expenditure") of the contract shall be subcontracted to SBEs.
- b) If there are insufficient qualified SBEs to meet the requirement of paragraph (a), the subcontracting requirement may be satisfied by subcontracting the CBE minimum expenditure to any qualified CBE; provided, that best efforts shall be made to ensure that qualified SBEs are significant participants in the overall subcontracting work.
- c) For every dollar expended by the Contractor with a resident-owned business (ROB), as defined in D.C. Official Code § 2-218.02(15), the Contractor shall receive a credit for \$1.10 against the CBE minimum expenditure.
- d) For every dollar expended by the Contractor with a disadvantaged business enterprise (DBE), as defined in D.C. Official Code § 2-218.33, the Contractor shall receive a credit for \$1.25 against the CBE minimum expenditure.
- e) For every dollar expended by the Contractor that uses a company designated as both a DBE and as a ROB, the Contractor shall receive a credit for \$1.30 against the CBE minimum expenditure.
- f) "COVID-19 emergency" means the emergencies declared in the Declaration of Public Emergency (Mayor's Order 2020-045) together with the Declaration of Public Health Emergency (Mayor's Order 2020-046), declared on March 11, 2020, including any extension of those declared emergencies.
- g) This special provision shall apply to all option periods exercised under those contracts.
- h) Except as provided in this Section 4.4, the requirements of Section 4.1.1 shall remain in effect.

Item #15. Section 5.4.5 (of the RFP) SBE Subcontracting Plan is revised as follows:

Each Offeror shall complete and submit as part of its Price Proposal a Subcontracting Plan in the form of **Attachment H**.

Item #16. Section 5.4.6 (of the RFP) First Source Employment Agreement is revised as follows:

Each Offeror shall complete and submit as part of its Price Proposal a First Source Agreement in the form of **Attachment I**.

By: RIDON

Pamela Ford Dickerson DGS' Contracting Officer

Date: 03/01/2021

- End of Addendum No. 4

Exhibit 1 Questions & Answers Spreadsheet (See following page)

Questions & Answers Spreadsheet

Request for Proposals ("RFP") No. DCAM-21-CS-RFP-0002 Construction Management At-Risk ("CMAR") Services for Therapeutic Recreation Center

Questions	Department Responses
1. Section 2.2.1.9 Permit - Please confirm the Contractor will prepare, submit, and pay the building permit or DGS will hold this responsibility?	The building permit drawings will be prepared by the Architect. The Architect/Engineer ("A/E") has hired the permit expeditor to help the CMAR manage the permit process. The CMAR will coordinate and work with the Architect and Permit Expeditor once awarded the project and manage the building permit fees. The building permit Fees will be carried as an allowance by The District of Columbia Department of General Services (the "District", "DGS" or "Department").
2. If the contractor is responsible for the building permit, then the building permit and expedites cost should be included in this CMAR fee or should be in the next GMP phase cost?	See answer above. The building permit expeditor fee is included in the A&E Agreement. The CMAR is to include staff costs to coordinate and work with the building permit expeditor and will be responsible for all other public space permits, traffic control plans, trade permits, etc. for their work.
3. Should the Performance and Payment Bonds and insurance cost phase or will be included in the GMP phase?	See Part 9 (of the RFP) Bonds Requirements and Form of Offer Letter and Bid Form for details.
4. Section 2.3.8 Move-in assistant: moving FF&E, do we have the list of FF&E to be relocated? Please provide a list or amount of the allowance for this item in the bid form if this contractor is required to include it in the fee for this phase.	The CMAR will not be responsible for removing the FF&E from the Therapeutic Recreation Center.
5. Is there any new FF&E and special equipment? If yes, is that included in the	The Department is carrying a separate allowance for the FF&E and is not included in the \$28M Hard Construction Budget.

budget of \$28,000,000?	
6. Please reference section 3.4.3 of the RFP for the PM Plan and Schedule. Item (iv) requests we explain how we will "deliver the project taking into consideration that there is year-round DPR programming at the Therapeutic Recreation Center and the intent is to keep the existing building active during construction of the new building." As the building is scheduled to be demolished as part of the scope of the project please clarify this question.	Please disregard Section 3.4.3 of the RFP referencing Item (iv) and continuing year-round DPR programming. The building will be demolished, therefore, there will be no activities in or around the building during construction.
question.7. Please reference section 2.11.4 of the RFP for the Award Fee Determination. The dates listed in section (a) and (b) do not seem to align with those listed in section 1.9.2 Project Schedule. Please confirm for the Award Fee Determination that the GMP agreed to date should be June 14, 2021 in 2.11.4. (a), and that the Substantial Completion should be October 5, 2022 in 2.11.4. (b) in accordance with the dates listed in 1.9.2	See Attached Revised Project Schedule: Replace section 2.11.4 (a) GMP agreed to dates of March 22, 2021 date with September 24, 2021 and 2.11.4 (b) of May 27, 2022 with December 5, 2022.
8. Will A/E provide permit level pool	The A/E will provide permit level pool drawings.

drawings or will those be our responsibility?	
 9. Is any part of the site required to be active/functioning at any period of time during construction? 	No, the entire site and surrounding park within the Therapeutic Recreation Center property fence line will be shut down.
10. Any consideration to be taken for the nearby abandoned railroad (Baltimore- Ohio line)?	The abandoned railroad is outside of the scope of work. However, the Department is pursuing an easement to connect to the existing sanitary line inside the railroad property.
11. Is there any Heritage Tree on site?	Yes. Trees # 849 and 850 are heritage trees. Tree # 849 is recommended to be removed as it is in a hazardous condition. Tree # 850 is being preserved.
12. Is there any desire to exceed LEED Silver certification?	The TR Center project minimum LEED Goal is Silver. DGS and DPR are always trying to exceed that minimum LEED goal as long as the project can stay on budget.
13. Permits – understand the design have already been awarded, please confirm if the building permits are apart of the A/E contract?	See response to question 1 & 2.
14. Baseline schedule – Per the RFP, it states the CM is to use Primavera as the scheduling tool. Can we use Microsoft Project in lieu of Primavera?	The CMAR can use Primavera or Microsoft Project for their Scheduling tool.
15. Have the commenced date been changed and if so, please provide new start date? Have the substantial completion date change or will it remain the same (10-5- 21)	Construction Start Date 9/3/2021 Substantial Completion Date 10/5/2022
16. Please confirm revised bid due date, time and manner of proposal deliver?	The Proposals' due date is hereby extended to March 11, 2021 at 2:00 PM . See Item #5 of the Addendum #4 for details.
17. Demolition – Will furniture and personal	The Department will remove all the furniture and personal belongings from the building prior to demolition.

belongings in the building be	
removed prior to demolition?	
Or would like a cost to move	
valuables to a location of your	
choice?	CMAD (
18. Safety – Per the RFP, a	CMAR to provide night watchman as necessary and cost should
24hr. surveillance cameras	be included in General Conditions.
are to be installed. Should we	
also include night security	
guards?	
19. Proposal – Please	See Part 4 (of the RFP) – Economic Inclusion
confirm the following:	See Sections 4.1, 4.1.1, 4.1.2, 4.1.4
Confirm Union and	
CBE/MBE requirements –	Pleas also see Section 4.4 Special Provisions related to COVID-
35% SBE; Confirm First	19 Emergency added via Addendum #4.
Source Agreement hiring	
requirements;	See Section 4.2 Residency Hiring Requirements for Contractors
	and Subcontractors for detail.
Confirm LEED	Confirmed the TR Center Project has a LEED Silver Requirement.
requirements.	San Section 2.2.1.9 (of the DED) Deliverables Liquidated
Confirme LD'ai	See Section 2.2.1.8 (of the RFP) Deliverables Liquidated
Confirm LD's;	Damages.
Confirm if Prolog is	CMAR must use Project Team in lieu of Prolog for DGS
required for project	Documentation
administration; GMP	Documentation
inclusive of all hard costs	
and contingencies.	GMP will include all Construction Hard Costs. DGS will carry an
and contingencies.	allowance for FF&E and LV. CMAR will coordinate with DGS
What about FFE, LV?	the purchase and installation for these items.
Confirm if General	Confirmed General Conditions are capped as provided in your
conditions are capped	proposal.
(GMP); Will you be	proposal.
providing a specification	Confirmed the A&E will be proving a specification book with the
book?	construction drawings.
20. RFP & SD Appendix:	See response to Question 7.
Please confirm the	
substantial Completion	
date as it is listed	
differently among the RFP	
and supporting documents	
(i.e. Paragraph 1.9	
provides a table for	
Procurement Schedule and	
Project Schedule which	
does not seem to correlate	
with each other or other	
	1

information within	
supporting documents.)	
21. RFP – Section 1.6 indicates the Department expects the GMP/permit documents will be completed by December 2020 and CMAR will then be required to obtain quotes from contractors. Supportive documentation reflects a March 15 completion for the GMP	Replace section 1.6 December 2020 date with April 2021. The GMP/Permit documents will be available July 1, 2021 at NTP for CMAR to start trading bidding.
Bid Set with an approx.	
NTP (award) of April 15,	
2021. Will the CD's for	
permitting and GMP be available upon NTP	
(award)?	
22. RFP – Section 2.2.1.9	The Department is working with the various DC Agencies for
makes reference to zoning	zoning and land use entitlements. The Department is proceeding
and land use entitlements.	with the process. Once the CMAR is on board DGS will update
Please confirm if these will	them on the status.
be required for this project	
and if so provide status update.	
23. Civil and landscape	Yes – The LOD will be extended to selectively include scope in
drawing - Civil drawing	the southern parcels, so to not trigger additional and unnecessary
CIV0103 LOD's run east	SWM requirements
to west along the south	
border of the site in line	
with the north side of the	
public alley. With the park	
to the south having scope within the documents, will	
the LOD's be extended to	
incorporate the south park?	
24. RFP 3.4.3 – Th 4 th	See response to Question 6.
deliverable for the RFP	
indicates the intent is to	
keep the existing building	
active during the construction of the new	
building. The Schematic	
Drawings reflect the new	
building in the same	
footprint as the existing in	
addition to references of a	

demolition early phase. Please confirm there is no	
program or building use	
during construction as well	
as when the building will	
be vacated/turned over to	
contractor.	
25. RFP – RFP ask for the	The SBE Subcontracting Plan and First Source Employment
SBE Subcontracting Plan	Agreement are required in Price Proposals only. See item Nos.
and First Source	15 and 16 in Addendum #4, for details.
Agreement to be submitted	
twice, once in the	
Technical Proposal and	
again in the Price Proposal.	
Please clarify if required in	
both.	
26. Standard contract	Confirmed. This RFP is for CMAR Services to include
provisions in the	Preconstruction Services, General Conditions and CMAR Fee.
Solicitation pertain to A/E	
services. Please confirm	
this is not intended to be	
design-build.	

Exhibit 2 Site Visit's Sign-in Sheet and Business Cards (See following page)

Company Co 2321 Contact TURNER email Javanson@teco.com CHIARANONTE JOR SWANSON GEGTANICAL GODILER. CM GRUDIET HAMIDA ALI MALOW Athones Qreacscent : NC. com GREG MCHUCH Renascent matt.byrre@reabuild.com Nex Thomas MON BUELD Hatt Byme 3 shere prhinson construction Parking Construction Ganaa Shuree Covet Jouran CJadene Keystowe DC. Com Cover Jondan Keystone Plus rsoper@Consigli.com Consig 1: Tob Sopre P mueller @ srsmoot. can Smoot Const. Tas yveller 2 cronin@grsmoot.com Amist Const Abbie Cronin itilton @ srsmoot.com Jeff Tilton Smoot Const. Semmet - croz SCN 2 & Kay Stonesc. Com Semuel Criz Keystone plus Cox Alter Construction Management Malikah Bernson Cox construction Turyd Stort Zayel shart & menbuild.com dennis.menton@uliting-turner.com BCN Build Dennis Menton Whiting Turner Coakley Williams atyshing a cockley williams. com Andrean Tyshing Jockerstewson & forecites construction, can FOREASTER CONSTRUCTION Joe Ockarsintusian

Exhibit 3 Geotechnical Report (See following page)

ECS Capitol Services, PLLC

Geotechnical Engineering Report

DC Therapeutic Recreation Center

3030 G Street Southeast, Washington, DC 20019

ECS Project Number 37:2962

February 18, 2021

CBE No. LZ26807012022

February 18, 2021

Mr. Matt Davitt Senior Associate **DLR Group** 419 7th Street, NW Washington, DC 20004

ECS Project No. 37:2962

Reference: **Geotechnical Engineering Report DC Therapeutic Recreation Center** 3030 G Street Southeast Washington, DC 20019

Dear Mr. Davitt:

ECS Capitol Services, PLLC (ECS) has completed the subsurface exploration, laboratory testing, and geotechnical engineering analyses for the above-referenced project. Our services were performed in general accordance with our Proposal No. 37:2930-GP, and Amendment to Consultant Services Agreement dated 10/08/2020. This report presents our understanding of the geotechnical aspects of the project along with the results of the field exploration and laboratory testing conducted.

It has been our pleasure to be of service to DLR Group during the design phase of this project. We would appreciate the opportunity to remain involved during the continuation of the design phase, and we would like to provide our services during construction phase operations as well to verify the assumptions of subsurface conditions made for this report. Should you have any questions concerning the information contained in this report, or if we can be of further assistance to you, please contact us.

Respectfully submitted, **ECS Capitol Services, PLLC,**

Pione Ray

Pierre O. Rouaud, E.I.T. Staff Project Manager prouaud@ecslimited.com

Stephen F. Patt, P.E **Principal Engineer** spatt@ecslimited.com

cc (via email): Gregory Benson- DGS, Aaron Snyder – SK&A

\\s37-ares\Data\Geotechnical_e-projects\2900-2999\2962 - Therapeutic Recreation Center\F-Final Report\2962-GR.docx

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
1.0 INTRODUCTION	2
1.1 General	
2.0 PROJECT INFORMATION	
2.1 Project Location and Current Site Conditions	3
2.2 Proposed Construction	3
2.2.1 Building Construction	3
2.2.2 Site Improvements	4
3.0 FIELD EXPLORATION	
3.1 Subsurface Characterization	5
3.2 Groundwater Observations	6
3.3 Laboratory Testing	6
4.0 DESIGN RECOMMENDATIONS	-
4.1 Building Foundation Design	8
4.2 Slabs on Grade	9
4.3 Below Grade and Pool Walls	
4.4 Perimeter And Pool Subdrainage	11
4.5 Seismic Design Considerations	12
4.6 Special Considerations for Footings	13
4.7 Stormwater Management Structures	13
4.8 Site Retaining Walls	14
4.9 Recommended Additional Exploration, Analysis, and Consultation	14
5.0 SITE CONSTRUCTION RECOMMENDATIONS	16
5.1 Subgrade Preparation	16
5.2 Earthwork Operations	17
5.2.1 Existing Man-Placed Fill	17
5.2.2 High Plasticity Soils	17
5.2.3 Structural Fill	17
5.3 Foundation and Slab Observations	18
5.4 Excavation Support	19
5.5 General Construction Considerations	
6.0 CLOSING	20

APPENDICES

Appendix A – Drawings & Reports

- Site Location Diagram
- Site/Regional Geology Diagram
- Boring Location Diagram
- Generalized Subsurface Soil Profile

Appendix B – Field Operations

- Reference Notes for Boring Logs
- Subsurface Exploration Procedure: Standard Penetration Testing (SPT)
- Boring Logs B-1 through B-4
- Boring Logs IT-1 through IT-6
- Infiltration Testing Procedure: Johnson Permeameter
- Infiltration Test Results

Appendix C – Laboratory Testing

- Laboratory Test Results Summary
- Plasticity Chart
- Grain Size Analysis

Appendix D – Supplemental Report Documents

- Design of Future Footing Adjacent to Existing Footing
- Undercut With Lean Concrete Diagram
- Swimming Pool Drainage Diagram
- French Drain Installation Procedure
- Johnson Permeameter[™]

EXECUTIVE SUMMARY

The following summarizes the main findings of the exploration, particularly those having a potential cost impact on the design and construction of the proposed Recreation Center. Further, our foundation recommendations and potential problems are summarized. Information gleaned from the executive summary should not be utilized in lieu of reading the entire geotechnical report.

- We understand the site consists of an existing recreation center and western building. Based on our review of the Schematic Design Submission dated 11/10/2020, the existing structure will be demolished and a new one-story recreation center is being proposed which will contain a basement level on the western side of the footprint. The planned finished floor elevation (FFE) is approximately EL +41.5 for the at-grade portion of the structure and EL +29.5 on the basement level. Per SK&A, the project structural engineer, maximum column loads for the new structure will be on the order of 150 kips, with wall loads of 1.5-3 kips/foot.
- Based on our findings and available project information we recommend the proposed structure be supported by conventional shallow wall and column footings bearing on natural soils or newly placed structural fill. Based on our findings, footings for the basement level (bearing at EL +27) can be designed for 4,000 psf bearing while footings for the atgrade portion of the building can be designed for 3,000 psf bearing. Existing fills and highly plastic soils (CH soils) were encountered at various locations on the site. Although we anticipate a majority of existing fills encountered in exploration will be removed during foundation excavation, some existing fills will still likely be present and are not suitable for foundation supporting requiring they be removed in their entirety and replaced with lean concrete. Additionally, based on laboratory testing, some soils within the proposed footprint may be highly plastic which have shrink/swell potential with moisture content changes. In areas where highly plastic soils are encountered, the highly plastic soils will need to be undercut to 4 feet below the proposed site grades/FFE and replaced with lean concrete to the bottom of the planed foundation elevation and to 2 feet below the proposed site grades/FFE for slab on grade. As an alternative to under cutting, additional shrink/swell laboratory testing on suspected highly plastic soils can be performed.
- Several stormwater management facilities are planned as part of the improvements to the site. ECS preformed infiltration testing at the locations and depths requested by Wiles Mensch. The results are included herein for Wiles Mensch to use in the site SWM design.
- The western portion of the proposed structure will include a below grade level. Footings at the differing bearing layers may fall within the zone of influence of each other. In order to avoid imposing additional load on existing walls/foundation elements this should be assessed by the project structural engineer.
- The recommendations contained in this report are for the current assumptions included herein. Should the design change or the assumptions be incorrect, ECS should be notified.

1.0 INTRODUCTION

1.1 GENERAL

The purpose of this study was to provide geotechnical information to assist with the design and construction planning of the proposed recreation center. The recommendations included in this report are based on project information included in the Schematic Design Submission dated 11/10/2020 and information provided by the project structural engineer, SK&A.

Our services were provided in general accordance with our Proposal No. 37:2930-GP, and Therapeutic Recreation Center Modernization Amendment Number 001 dated 10/5/2020. This report discusses our exploratory and testing procedures, presents our findings and evaluations including the following:

- Observations from our site reconnaissance including current site conditions, surface drainage features, and surface topographic conditions.
- A review of the published geologic conditions, their relevance to your planned development.
- A subsurface characterization and a description of the field exploration and laboratory tests performed. Groundwater concerns relative to the planned construction, are summarized.
- A final log of the soil boring and records of the field exploration prepared in accordance with the standard practice for geotechnical engineering. A boring location plan is included, and the results of the laboratory tests are plotted on the final boring log and included on a separate test report sheet.
- Recommended allowable soil bearing pressure for conventional shallow foundations and estimates of predicted foundation settlement.
- Recommendations for slab-on-grade construction and perimeter/subslab drainage construction.
- Recommendations for seismic site classification in accordance with the International Building Code (IBC 2015).
- Presentation of onsite infiltration testing results.
- Recommendations for below grade walls.
- Recommendations pertaining to earthwork, support of excavation, and construction operations.
- Recommendations for additional testing and/or consultation that might be of value to augment the geotechnical assessment and related engineering for this project.

2.0 PROJECT INFORMATION

2.1 PROJECT LOCATION AND CURRENT SITE CONDITIONS

The recreation center is located east of the Anacostia Freeway within the western portion of Fort Dupont Park. The site is bound to the north by residential development, to the south by G Street, SE, to the east by Minnesota Avenue SE, and to the west by the Baltimore & Ohio Railroad. The area encompasses 24 lots within Squares 5465 & 5467 comprising approximately 312,000 SF of area. The existing recreation center is located on the southern portion of the property. Based on provided documentation, the existing structure is primarily constructed at grade, with a partial basement located under the western portion of the structure. Additionally the recreation center contains a 3470 SF pool in the western portion of the building footprint. The remaining portions of the site are comprised of pavement, grassy areas and wooded land. Site topography ranges from a topographic high of EL. 46 feet in the southeastern portion of the site to EL. 20 along the stream bordering the proposed site directly to the north.

Figure 2.1.1 Site Location

2.2 PROPOSED CONSTRUCTION

2.2.1 Building Construction

Based on our review of the information provided Schematic Layout Plan dated 9/15/2020, the Request for Consultant Proposals dated May 30, 2019, and the Schematic Design Submission dated 11/10/2020 we understand the project will consist of the construction of a new recreational building (total square footage approximately 36,000 ft²). The proposed structure will likely be comprised of concrete and structural steel with a ground floor finish floor elevation approximately at existing grades (approximately EL. +41.5) and a limited basement level in the western portion of the recreation center with a finished floor of EL. +29.5. The recreation center will include an indoor pool located in the western portion of the proposed building footprint. Should final design details such as loading and finished floor elevations differ from assumptions included herein, we can

review and confirm/update our recommendations. Our understanding of the proposed structure is summarized in following table.

Subject	Proposed Structure Construction
New Addition Footprint ⁽²⁾	Approximately 36,000 ft ²
# of Stories	1 Story structure with a partial basement in the western portion of the footprint
Structural Loading ⁽¹⁾	150 kip column loads 1.5-3 kip/foot wall loads
Lowest Finished Floor	At grade: EL. +41.5 feet
Elevation ⁽²⁾	Western Basement: EL. +29.5 feet

Table 2.2.1 Assumed Design Values/Proposed Conditions

1. Structural loading provided by SK&A via email on 2/8/2021

2. Based on review of the Schematic Design Submission dated 11/10/2020

2.2.2 Site Improvements

We understand several stormwater management facilities are planned as part of the improvements to the park; however, specific information including facility footprint size/inverts was unavailable at this time. ECS was provided boring locations by Wiles Mensch (project civil engineer. Additionally, site improvements including new parking, basketball courts, playground spaces, and paved sidewalk areas are planned as part of the project. Site retaining walls are also shown on the site plans for future phases but based on the drawing notes, they are not included in this scope of work and therefore were not included in ECS' exploration or recommendations scope.

3.0 FIELD EXPLORATION

Our general exploration procedures are explained in greater detail in Appendix B including on the insert entitled Subsurface Exploration and Infiltration Testing Procedures. Our scope of work included the following:

- Reviewing the subsurface conditions based on explorations performed within the project vicinity
- Drilling four soil test boring near the footprint of the proposed recreation center (referenced as B-1 through B-4) to depths of 30 to 40 feet below the existing ground surface.
- Drilling six infiltration test borings near at locations provided by the project civil engineer (referenced as IT-1 through IT-6) to approximately to depths of 10 to 15 feet below the existing ground surface. Infiltration testing was performed within an offset location (AP-1 through AP-6) at test depths 8 feet below grade.

Elevations noted on the borings log are based on existing conditions drawings, provided on 12/16/2020. Boring locations were identified in the field by representatives from ECS prior to mobilization of our drilling equipment utilizing traditional pacing and taping methods. The approximate as-drilled boring locations are shown on the Boring Location Diagram in Appendix A.

3.1 SUBSURFACE CHARACTERIZATION

The subsurface conditions encountered were generally consistent with published geological mapping. The following sections provide generalized characterizations of the soil strata encountered during our subsurface exploration. For subsurface information at a specific location, refer to the Boring Logs in Appendix B.

The site is located in the Coastal Plain Physiographic Province of Washington, DC. The near surface soils in the Washington, D.C. area typically consist of man-placed fill soils or natural soils which have been disturbed by previous construction. Typically, the upper, natural soils consist of Alluvium or Terrace "River Deposits" of Quaternary age. These water deposited alluvial soils typically consist of interbedded layers of silt, sand, clay and gravel. Underlying the Alluvial Deposits are the marine deposits of the Potomac Formation, which are Cretaceous Age sands, silts and clays. The Potomac Formation is the oldest sedimentary deposit in the Washington metro area. The silts and clays of the Potomac Formation are often referred to as "marine clays", and typically have high plasticity characteristics and significant shrink-swell potential. Furthermore, the Potomac Formation soils are highly overconsolidated and fissured, and contain pre-existing failure surfaces referred to as "slickensides." At significant depths, usually 200 to 300 feet below the existing ground surface, the site is underlain by crystalline bedrock. An overview of the general site geology is illustrated in Appendix A of this report.

Approximate Depth Range (feet)	Elevation (feet)	Stratum	General Description	Ranges of SPT ⁽¹⁾ N- values (bpf)
0.0 to 0.5 ft (Surface cover)	N/A	N/A	Surficial Materials - Up to 6 inches of topsoil	N/A
0.25 to 12.0 ft	EL. +24.0 ft to EL. +40.0 ft	I	Existing Fills - Generally Clays (CL), Sands (SM, SP, SC) and Gravel (GP) - Trace organics - Brick and Concrete Debris	6 to 36
0.25 to 40.0 ft	EL6.0 ft to EL. +40.0 ft	II	Quaternary Soils Generally CLAYS (CL, CH), SANDS (SP, SM, SC), or a combination of these materials Varying amounts of gravel 	2 to 39

Table 3.1	.1. Subsur	face Strati	igraphy
-----------	------------	-------------	---------

Notes: (1) Standard Penetration Test (blows per foot, bpf).

3.2 GROUNDWATER OBSERVATIONS

Water levels were measured in our boring logs in Appendix B. Groundwater depths were measured within each of the borings at the time of drilling and prior to grouting. Additionally, per DOEE regulations, additional were taken approximately 24 hours after completion for each of the infiltration borings. The table below provides a summary of the water levels obtained during the exploration.

Boring #	Groundwater Depth During Subsurface Exploration (ft)	Groundwater Elevation During Subsurface Exploration (ft)
B-1	29.0	+5.0
B-2	19.0	+21.0
B-3	19.5	+22.0
B-4	N/E	N/E
IT-1/AP-1	N/E	N/E
IT-2/AP-2	N/E	N/E
IT-3/AP-3	N/E	N/E
IT-4/AP-4	N/E	N/E
IT-5/AP-5	N/E	N/E
IT-6/AP-6	N/E	N/E

Table 3.2.1. Subsurface Stratigraphy

Notes: N/E - Not Encountered, groundwater was not observed in the borehole after 24 hours

Variations in groundwater elevation can occur as a result of changes in precipitation, evaporation, surface water runoff, construction activities, and other factors.

3.3 LABORATORY TESTING

The laboratory testing performed by ECS for this project consisted of selected tests performed on samples obtained during our field exploration operations. Classification and index property tests

were performed on representative soil samples obtained from the test borings in order to aid in classifying soils according to the Unified Soil Classification System and to quantify and correlate engineering properties. The laboratory testing program included visual classifications, natural moisture content tests, Atterberg Limits tests, and washed sieve analyses.

A geotechnical engineer visually classified each soil sample from the test borings on the basis of texture and plasticity in accordance with the Unified Soil Classification System (USCS) and ASTM D-2488 (Description and Identification of Soils-Visual/Manual Procedures). After classification, the geotechnical engineer grouped the various soil types into the major zones noted on the boring logs in Appendix B. The group symbols for each soil type are indicated in parentheses following the soil descriptions on the boring logs. The stratification lines designating the interfaces between earth materials on the boring logs are approximate; in situ, the transitions may be gradual.

The soil samples collected from the borings will be retained in our laboratory for a period of 60 days after the completion date of the borings after which they will be discarded.

4.0 DESIGN RECOMMENDATIONS

Based on our review of the subsurface conditions encountered in the borings, the site appears to be suitable for the proposed construction from a geotechnical perspective. The conclusions and recommendations presented in this report should be incorporated in the design and construction planning of the project to reduce possible soil and/or foundation related problems during construction. ECS has discussed the project with your office and the project design team.

The following sections present more detailed recommendations with regard to the support of the proposed building. These include recommendations for foundations, slab on grade, retaining walls and drainage and seismic design parameters. Discussion of the factors affecting the building foundations for the proposed construction, as well as additional recommendations regarding construction at the project site are included below.

4.1 BUILDING FOUNDATION DESIGN

ECS has prepared foundation recommendations for proposed recreation center based upon our understanding of the project's proposed finish floor elevations and loading previously presented in Table 2.2.1. Based on our understanding of the project, we have assumed the bottom of proposed foundations will be at elevation EL +39 (2.5 feet below the finished floor elevation of EL +41.5) and EL +27 (2.5 feet below the basement finished floor elevation of EL +29.5) for the basement level. Foundations at this elevation will generally bear in Stratum II materials and should be designed as detailed below, however, some highly plastic soils and existing fill materials were encountered which may not be suitable for support. Additional information about these materials is provided after Table 4.1.1.

Design Parameter		Column Footing	Wall Footing	
Net Allowable	Basement Level	4,000 psf	4,000 psf	
Bearing Pressure	At-Grade Level	3,000 psf	3,000 psf	
Bearing Stratum	Basement Level	Stratum II – Low Plasticity* (min SPT of 7)		
	At-Grade Level	Stratum II – Low Plasticity* (min SPT of 7) or Newly Placed Structural Fill		
Minimum Fo	ooting Width	36 inches	36 inches	
Minimum Footing Embedment Depth (below slab or finished grade)		30 inches	30 inches	
Estimated Total Settlement		On the order of 1 inch	On the order of 1 inch	
Estimated Differential Settlement		Less than 0.5 inches between columns	Less than 0.5 inches between column bays	

Table 4.1.1 Foundation Design

Most of the soils at the assumed bearing elevation EL +27 feet for the basement are anticipated to be suitable for the support of the proposed structure; however, existing fills and highly plastic soils will likely be encountered during foundation installation for the at-grade foundations and the following sections provide additional recommendations should these materials be encountered.

Existing Fills: Existing fills are not suitable for foundation support as the manner in which they were placed is unknown and therefore may adversely affect foundation performance. If existing fills are encountered at/below the bottom of footings, those materials will need to be removed in their entirety under the foundation elements. Any undercuts should be backfilled with lean concrete (f'c \geq 1,000 psi at 28 days) up to the original design bottom of footing elevation; the original footing shall be constructed on top of the hardened lean concrete. Alternatively, foundation elements could be lowered to bear on natural soils. Please see the undercut and replacement diagram included within Appendix D for additional information. Undercuts should be anticipated in the vicinity of borings B-2, B-3, and B-4.

Highly Plastic, CH Soils: Although the CH materials encountered onsite (encountered in B-3) are generally suitable for support of the structure, due to their shrink/swell potential with moisture changes, the materials will need to be undercut under foundation elements if encountered onsite. Undercutting should be performed to a depth of 4 feet below top of slab/exterior site grades or in their entirety (whichever is less) and replaced with lean concrete as described above. Alternatively, foundation elements could be lowered to bear on the highly plastic soils with a minimum embedment of 4 feet below slab or finished grade.

4.2 SLABS ON GRADE

Provided subgrades are prepared as discussed herein, the proposed floor slabs can be constructed as Ground Supported Slabs (or Slab-On-Grade). Based on our understanding of lowest finished floor elevation (approximately EL +29.5 feet for the basement level and EL +41.5 for the at-grade level), it appears that the slabs will bear on Stratum II materials and/or newly placed fill. The following graphic depicts our soil-supported slab recommendations:

- 1. Drainage Layer Thickness: 8 inches minimum
- 2. Drainage Layer Material: AASHTO No. 57 Stone

Soft or yielding soils may be encountered in some areas. Additionally, highly plastic, CH soils were encountered near the existing ground surface. The encountered highly plastic CH soils have the potential to shrink and swell with moisture changes which can lead to slab performance problems. If encountered, these soils should be removed and replaced with compacted drainage material in accordance with the recommendations included in this report. Highly plastic, CH soils need to be removed to a depth of 2 feet below bottom of proposed slabs or in their entirety (whichever is less).

Subgrade Modulus: Provided the Granular Drainage Layer are constructed in accordance with our recommendations, the slab may be designed assuming a modulus of subgrade reaction, k_1 of 75 kcf for the at grade portion of the structure and 150 kcf for the basement level. The modulus of subgrade reaction value is based on a 1 ft by 1 ft plate load test basis.

Vapor Barrier: Before the placement of concrete, a vapor barrier may be placed on top of the granular drainage layer to provide additional protection against moisture penetration through the floor slab. When a vapor barrier is used, special attention should be given to surface curing of the slab to reduce the potential for uneven drying, curling and/or cracking of the slab. Depending on proposed flooring material types, the structural engineer and/or the architect may choose to eliminate the vapor barrier.

Slab Isolation: Soil-supported slabs should be isolated from the foundations and foundationsupported elements of the structure so that differential movement between the foundations and slab will not induce excessive shear and bending stresses in the floor slab. Where the structural configuration prevents the use of a free-floating slab such as in a drop down footing/monolithic slab configuration, the slab should be designed with suitable reinforcement and load transfer devices to preclude overstressing of the slab.

4.3 BELOW GRADE AND POOL WALLS

Based on our review of the concept design drawings, we understand below-grade and pool walls will be included in the project. We recommend that the below-grade walls be designed to withstand at-rest lateral earth pressures and surcharge loads from nearby building foundations, and/or streets. These recommendations apply to a "drained" condition which is where there is drainage material behind below grade walls that prevents hydrostatic water pressures on the back of the foundation wall. To accomplish a drained condition, drainage materials such as a free draining gravel, geocomposite drainage panels, weep holes, and an underslab drainage system should be used.

We recommend that walls that are restrained from movement at the top be designed for a linearly increasing lateral earth pressure. The following figure depicts our recommended at-rest lateral earth pressure condition for a "drained foundation wall" with restrained wall top:

Figure 4.3.1 Lateral Earth Pressures Diagram – Drained Condition

Surcharge loads imposed within a 45 degree slope of the base of the restrained wall should be considered in the below grade wall design. These surcharge loads should be based on an at-rest pressure coefficient, k_0 , of 0.5. Care should be used to avoid the operation of heavy equipment to compact the wall backfill since it may overload and damage the wall; in addition, such loads are not typically considered in the design of below grade walls.

4.4 PERIMETER AND POOL SUBDRAINAGE

We recommend the recreation center be provided with an exterior perimeter subdrainage system. The system may consist of perforated wall, closed joint drain tiles located around the exterior perimeter of the building, as close as feasible to the exterior wall foundation stem, slightly above the foundation footing. The drain lines should be surrounded by coarse-grained material having a gradation compatible with the size of the opening utilized in the drain lines. Drain lines should be designed to gravity connect to a storm sewer and/or daylight (if feasible). Due to the depth of observed groundwater, we do not currently anticipate that under slab drainage systems will be necessary; however, should ground water be encountered during excavation ECS should be contacted to update our drainage recommendations.

In addition to the building perimeter subdrainage systems, we recommend the below grade areas of the proposed pool within the recreation center be provided with an underslab subdrainage system (i.e., a "drained" below grade condition). This recommendation applies to all of the pool areas that are below existing site grades. A sketch titled and "Swimming Pool Drainage Diagram" provides a graphical summary of our recommendations and is included in the Appendix. The system may consist of perforated or porous wall, closed joint drain tiles located at the center of the pool. As shown in the Appendix, we recommend the walls and bottom of the pool be lined with a layer of free draining gravel to allow for drainage of water from the walls and pool bottom, we recommend a geotextile separation fabric (Mirafi 140N or similar) be placed between the natural

soils and gravel to reduce the migration of fines between the two "zones". The drain lines should be surrounded by a minimum of 6 inches of gravel or clean sand material having a gradation compatible with the size of the opening utilized in the drain lines and the surrounding soils to be retained.

We recommend the drain system for the proposed pool be designed to flow to at least one permanent sump or via gravity to an adjacent storm structure (if feasible). Should gravity not be feasible, we recommend the permanent sump(s) be designed with a full duplex capability (i.e., two pumps per pit), with each individual pump rated at no less than 10 gpm. With this configuration, under emergency conditions, these individual sumps would have the capacity to pump 20 gpm. The contractor should monitor the pumping rate of the construction dewatering system in order to verify that the permanent sump pump has been adequately sized. Smaller or conversely larger pumps may ultimately be needed. Once the plans are further developed, please contact ECS so that we can refine our pumping estimates.

4.5 SEISMIC DESIGN CONSIDERATIONS

Seismic Site Classification: The International Building Code (IBC) 2015 requires site classification for seismic design based on the upper 100 feet of a soil profile. At least two methods are utilized in classifying sites, namely the shear wave velocity (v_s) method and the Standard Penetration Resistance (N-value) method. The second method (Standard Penetration Resistance) was used in classifying this site.

SEISMIC SITE CLASSIFICATION						
Site Class	Soil Profile Name	Shear Wave Velocity, Vs, (ft./s)	N value (bpf)			
А	Hard Rock	Vs > 5,000 fps	N/A			
В	Rock	2,500 < Vs ≤ 5,000 fps	N/A			
С	Very dense soil and soft rock	1,200 < Vs ≤ 2,500 fps	>50			
D	Stiff Soil Profile	600 ≤ Vs ≤ 1,200 fps	15 to 60			
E	Soft Soil Profile	Vs < 600 fps	<15			

Table 4.5.1. Seismic Site Classification

Based upon our interpretation of the subsurface conditions, the appropriate Seismic Site Classification is "E" as shown in the preceding table. Please note, the of the N-value method to define the site class may not accurately represent the appropriate shear wave classification. As subsequently detailed in the recommendations for additional site exploration and analysis section of this report, the site could possibly be categorized as a "Site Class D" but will require site specific refraction microtremor (ReMi) testing.

Ground Motion Parameters: In addition to the seismic site classification, ECS has determined the design spectral response acceleration parameters following the IBC methodology The Mapped Reponses were estimated from the USGS website <u>https://hazards.atcouncil.org</u>. The design responses for the short (0.2 sec, S_{DS}) and 1-second period (S_{D1}) are noted in bold at the far right end of the following table.

GROUND MOTION PARAMETERS [IBC 2015 Method]								
Period (sec)	Res Accel	d Spectral ponse erations (g)	Values Coeffic for Site		Maximum Spectral Response Acceleration Adjusted for Site Class (g)		Design Spectral Response Acceleration (g)	
Reference	•	1613.3.1 & (2)	Tables 1613.3.3 (1) & (2)		Eqs. 16-37 & 16-38		Eqs. 16-39 & 16-40	
0.2	Ss	0.118	F_{a}	2.5	$S_{MS}=F_aS_s$	0.295	$S_{DS}=2/3 S_{MS}$	0.196
1.0	S1	0.051	F_v	3.5	$S_{M1}=F_vS_1$	0.178	$S_{D1}=2/3 S_{M1}$	0.118

The Site Class definition should not be confused with the Seismic Design Category designation which the Structural Engineer typically assesses.

4.6 SPECIAL CONSIDERATIONS FOR FOOTINGS

Based on our review of the provided drawings, we understand footings will be needed at two bearing elevations. Footings for the at-grade construction may be in the 1H:1V zone of influence of footings for the basement and thus will adversely load the basement walls with new footing loads. The structural engineer should review and/or lower the adjacent footings to account for adjacent influences. A diagram detailing our recommendations is included within Appendix D.

4.7 STORMWATER MANAGEMENT STRUCTURES

A system of stormwater management facilities has been proposed to be constructed as part of the overall improvements to the site, and infiltration testing was requested as part of ECS' scope of services.

At this time limited information and details regarding the proposed stormwater management facilities are known; however, we anticipate the soil conditions will generally be suitable for the stormwater management facilities. This suitability should be further analyzed by Wiles Mensch. The individual tests are included in Appendix B and the field K_{sat} values are summarized in the table below. Additionally, the newly issued Department of Energy and the Environment (DOEE) Stormwater Guidebook 2020, Appendix P requires groundwater readings after 24 hours within the infiltration borings, which are also included below.

Infiltration Test Location	Depth of Test (ft)	Elevation of Test (ft)	Laboratory Classification	Measured Field K _{sat} Value (in/hr) ⁽¹⁾	24-hour Groundwater Depths (ft)			
AP-1 (offset IT-1)	<u>+</u> 8.0	+29.0	SM	0.00	N.E. ⁽²⁾			
AP-2 (offset IT-2)	<u>+</u> 8.0	+33.0	SM	0.19	N.E. ⁽²⁾			
AP-3 (offset IT-3)	<u>+</u> 8.0	+36.0	SM	0.24	N.E. ⁽²⁾			
AP-4 (offset IT-4)	<u>+</u> 8.0	+36.0	CL	0.23	N.E. ⁽²⁾			
AP-5 (offset IT-5)	<u>+</u> 8.0	+33.0	SM	0.21	N.E. ⁽²⁾			
AP-6 (offset IT-6)	<u>+</u> 8.0	+31.0	CL	0.00	N.E. ⁽²⁾			

Table 4.7.1 K_{sat} Field Values

Notes: (1) If the measured infiltration rate is less than 0.50 in/hr, the project civil engineer should review the enclosed data to determine an appropriate factor of safety to apply to the measured infiltration rates.

(2) N.E. – Not Encountered, groundwater was not observed in the borehole after 24 hours.

It is important to note that the saturated hydraulic conductivity (K_{sat}) rate (traditionally presented in units of inches/hour for SWM applications) included in the table above is different than the traditional standpipe test infiltration rate (also presented in units of inches/hour for SWM applications). The standpipe test measures soil conductivity with a falling head in which the height of a column of water in the test hole drops during the testing period. The referenced Johnson PermeameterTM measures the saturated hydraulic conductivity (K_{sat}) property of the soil in which the height of a column of water in the test hole is maintained at the same level throughout the testing period. While both test methods present infiltration values in units of inches/hour, the constant head K_{sat} values can be an order of magnitude slower than the falling head standpipe values which have traditionally been utilized for SWM design practice in the project vicinity. The civil engineer should take this into account when using the values included herein and apply a conversion factor should it be necessary.

4.8 SITE RETAINING WALLS

We understand retaining walls may be part of the overall project. As indicated on Schematic Drawing L1.1 dated 11.10.2020, retaining walls are slated for future work and not in the current contract. While not in the scope of our initial geotechnical exploration, ECS can perform geotechnical exploration and provide design recommendations for onsite retaining walls upon your request.

4.9 RECOMMENDED ADDITIONAL EXPLORATION, ANALYSIS, AND CONSULTATION

Geophysical Testing for Seismic Site Classification: Should an increased seismic site class be beneficial to the structural design, we can perform additional site specific refraction microtremor (ReMi) testing to measure the shear wave velocity of the soils onsite.

Plastic Soil Laboratory Testing: Highly plastic soils were encountered during our exploration and therefore, we have recommended the undercutting of the highly plastic soils beneath the proposed recreation center. As an alternative to undercutting these materials, a laboratory program consisting of shrink/swell testing and expansion index testing can be performed in coordination with construction operations to determine how susceptible the soils are to shrink/swell. If the testing shows the soils to have a low potential for swell/expansion the foundations/slabs can be installed without additional undercut or embedment detailed in Section 4.1. Shrink/Swell testing requires a greater amount of material than obtained during typical boring sampling but samples could be collected prior to/in coordination with construction efforts.

5.0 SITE CONSTRUCTION RECOMMENDATIONS

5.1 SUBGRADE PREPARATION

Stripping and Grubbing: The subgrade preparation should consist of stripping all existing building materials, removal of utilities, and any other soft or unsuitable materials from the 10-foot expanded addition limits and to 5 feet beyond the toe of structural fills (where feasible). ECS should be called on to verify that unsuitable surficial materials and existing fills have been completely removed prior to the construction of structure foundations.

Demolition Considerations: Depending on the method of demolition, subsurface soils may be disturbed and their bearing capacity compromised. A loss in capacity may lead to undercutting and backfilling work beyond the expected project budget. Due to the proposed construction occurring within the footprint of a demolished structure, existing foundation elements may interfere with the construction of slab on grade and new footings. ECS recommends the removal of existing footings prior to the beginning of new footing excavation.

Proofrolling: After removing all unsuitable surface materials, cutting to the proposed grade, and prior to the placement of any structural fill or other construction materials, the exposed subgrade should be examined by the Geotechnical Engineer of Record (GER) or authorized representative. If feasible, the exposed subgrade should be thoroughly proofrolled with previously approved construction equipment having a minimum axle load of 10 tons (e.g. fully loaded tandem-axle dump truck). If proofrolling is not feasible, the GER should be consulted for alternate testing/observation recommendations in these areas. The areas subject to proofrolling should be traversed by the equipment in two perpendicular (orthogonal) directions with overlapping passes of the vehicle under the observation of the GER or authorized representative. This procedure is intended to assist in identifying any localized yielding materials. In the event that unstable or "pumping" subgrade is identified by the proofrolling, those areas should be marked for repair prior to the placement of any subsequent structural fill or other construction materials. Methods of repair of unstable subgrade, such as undercutting or moisture conditioning, should be discussed with the GER to determine the appropriate procedure with regard to the existing conditions causing the instability.

Dewatering: The contractor shall make their own assessment of temporary dewatering needs based upon the limited subsurface groundwater information presented in this report. Soil sampling is not continuous, and thus soil and groundwater conditions may vary between sampling intervals (typically 5 feet). If the contractor believes additional subsurface information is needed to assess dewatering needs, they should obtain such information at their own expense. ECS makes no warranties or guarantees regarding the adequacy of the provided information to determine dewatering requirements; such recommendations are beyond our scope of services.

Dewatering systems are a critical component of many construction projects. Dewatering systems must be selected, designed, and maintained by a qualified and experienced (specialty or other) contractor familiar with the succinct geotechnical and other aspects of the project. The failure to properly design and maintain a dewatering system for a given project can result in delayed construction, unnecessary foundation subgrade undercuts, detrimental phenomena such as 'running sand' conditions, internal erosion (i.e., 'piping'), the migration of 'fines' down-gradient towards the dewatering system, localized settlement of nearby infrastructure, foundations, slabs-
on-grade and pavements, etc. Water discharged from any site dewatering system shall be discharged in accordance with all local, state and federal requirements.

5.2 EARTHWORK OPERATIONS

5.2.1 Existing Man-Placed Fill

Existing fills at the foundation elevations should be undercut and removed from beneath proposed foundation elements in their entirety. Existing fills within the slab and field areas that do not pass a proofroll as detailed above should be evaluated by the GER. The subgrade should then be proofrolled to determine if additional undercuts are needed. Should undercutting be required ECS personnel should confirm that fill removal has been suitably accomplished.

5.2.2 High Plasticity Soils

High plasticity soils are those soil materials classified as Elastic Silt (MH) and Plastic Clay (CH). High plasticity soils were encountered in boring B-3 at depths of 2.5 to 5 feet below existing grades. Where high plasticity soils are encountered at design subgrade elevations in slab, field, and pavement areas, the subgrade should be undercut two feet and grades restored with approved non-plastic Structural Fill (LL<40, PI<20). Where high plasticity soils are encountered at design are encountered at foundation bearing elevation, undercutting should be performed as detailed within section 4.1.

5.2.3 Structural Fill

Prior to placement of Structural Fill, representative bulk samples (about 50 pounds) off-site borrow should be submitted to ECS for laboratory testing, which will typically include Atterberg limits, natural moisture content, grain-size distribution, and moisture-density relationships (i.e., Proctors) for compaction. Import materials should be tested prior to being hauled to the site to determine if they meet project specifications. Alternatively, Proctor data from other accredited laboratories can be submitted if the test results are within the last 90 days.

Satisfactory Structural Fill Materials: Materials satisfactory for use as Structural Fill should consist of inorganic soils with a Max. Particle Size less than 4 inches in diameter with a USCS soil classification of SM, SP, SC, ML, CL, GM, GP, and/or a combination of these materials. Structural fill shall be placed using the following requirements.

STRUCTURAL FILL INDEX PROPERTIES										
Subject	Property									
Building and Pavement Areas	LL < 40, PI<15									
Max. Particle Size	4 inches									
Fines Content (% passing #200 sieve)	Max. 25 %									
Max. organic content	5% by dry weight									

Table 5.2.3.1 Structural Fill Properties

Table 5.2.5.2 Structural Fill Compaction										
STRUCTURAL FILL COMPACTION REQUIREMENTS										
Subject	Requirement									
Compaction Standard	Standard Proctor, ASTM D698									
Required Compaction	95% of Max. Dry Density									
Moisture Content	-2 to +3 % points of the soil's optimum value									
Loose Thickness	8 inches prior to compaction									

Table 5.2.3.2 Structural Fill Compaction

Based on these requirements, a majority of the onsite materials may be suitable for reuse onsite however, they were fine grained in nature and produce water slowly. Moisture control will be critical during placement if ML/CL soils are used.

Unsatisfactory Materials: Unsatisfactory fill materials include materials which to not satisfy the requirements for suitable materials, as well as topsoil and organic materials (OH, OL), elastic Silt (MH), and high plasticity Clay (CH).

5.3 FOUNDATION AND SLAB OBSERVATIONS

Protection of Foundation Excavations: Exposure to the environment may weaken the soils at the footing bearing level if the foundation excavations remain open for too long a time. Therefore, foundation concrete should be placed the same day that excavations are made. If the bearing soils are softened by water intrusion or exposure, the softened soils must be removed from the foundation excavation bottom immediately prior to placement of concrete. If the excavation must remain open overnight, or if rainfall becomes imminent while the bearing soils are exposed, a 1 to 3-inch thick "mud mat" of "lean" concrete should be placed on the bearing soils before the placement of reinforcing steel.

Footing Subgrade Observations: It is important to have ECS observe the foundation subgrade prior to placing foundation concrete, to confirm the bearing soils are what was anticipated and the recommendations provided in **Section 4.1** are followed.

Slab Subgrade Verification: A representative of ECS should be called on to observe exposed subgrades within the proposed structure limits to assure that adequate subgrade preparation has been achieved. If there will be a significant time lag between the site grading work and final grading of concrete slab areas prior to the placement of the subbase stone and concrete, a representative of ECS should be called on to verify the condition of the prepared subgrade. Prior to final slab construction, the subgrade may require scarification, moisture conditioning, and re-compaction to restore stable conditions.

5.4 EXCAVATION SUPPORT

Considering the below grade nature of the basement, we anticipate a temporary excavation system may be necessary for the construction of the below-grade areas due to the extent of excavation and proposed number of below-grade levels. A free-drpaining system consisting of soldier piles and wood lagging is recommended for temporary excavation support. The system could be braced externally using tiebacks, where possible; alternatively, rakers or other forms of site internal bracing may also be feasible. Spacing of the soldier piles and braces should be determined by a structural analysis. However, we recommend the maximum center line to center line spacing of the soldier piles not exceed 8 feet. In addition, wooden lagging should have a minimum thickness of 3 inches. As stated previously, in areas where tiebacks are not feasible, an internal bracing system of rakers would be required. Rakers should be braced against toe blocks or other reaction points that have been designed to carry the load.

The temporary earth retention system should allow for "stepping down" of the shallow foundations to a minimum of 3 feet below the proposed footing elevations. In the event that a step down is required, construction difficulties can be avoided with regard to undermining the installed soldier piles when the footing is being placed.

If tiebacks are used, we recommend a performance test be performed on 10% of randomly selected tiebacks. The performance test evaluates the tieback load carrying capacity, deflections during loading, and movements with respect to time. We also recommend 100% of the tiebacks be proof tested. Both the proof and performance testing shall be conducted in accordance with PTI standards.

The contractor should avoid stockpiling excavated materials immediately adjacent to the excavation walls. We recommend stockpile materials be kept back from the excavation a minimum distance equal to one-half the excavation depth to avoid surcharging the excavation walls. If this is impractical due to space constraints, the excavation walls should be retained with bracing design for the anticipated surcharge loading.

5.5 GENERAL CONSTRUCTION CONSIDERATIONS

Surface Drainage: Surface drainage conditions should be properly maintained. Surface water should be directed away from the construction area, and the work area should be sloped away from the construction area at a gradient of 1 percent or greater to reduce the potential of ponding water and the subsequent saturation of the surface soils. At the end of each work day, the subgrade soils should be sealed by rolling the surface with a smooth drum roller to minimize infiltration of surface water.

Excavation Safety: Cuts or excavations associated with utility excavations may require forming or bracing, slope flattening, or other physical measures to control sloughing and/or prevent slope failures. Contractors should be familiar with applicable OSHA codes to ensure that adequate protection of the excavations and trench walls is provided.

6.0 CLOSING

ECS has prepared this report to guide the geotechnical-related design and construction aspects of the project. We performed these services in accordance with the standard of care expected of professionals in the industry performing similar services on projects of like size and complexity at this time in the region. No other representation, expressed or implied, and no warranty or guarantee is included or intended in this report.

The description of the proposed project is based on information provided to ECS by the design team. If any of this information is inaccurate, either due to our interpretation of the documents provided or site or design changes that may occur later, ECS should be contacted so we can review our recommendations and provide additional or alternate recommendations that reflect the proposed construction. When the final design and number of lowest levels of below grade levels is determined, ECS should be notified immediately so that our recommendations may be updated (if necessary).

We recommend that ECS review the project's plans and specifications so we can confirm that those plans/specifications are in accordance with the recommendations of this geotechnical report.

Field observations and quality assurance testing during earthwork and foundation installation are an extension of, and integral to, the geotechnical design. We recommend that ECS be retained to apply our expertise throughout the geotechnical phases of construction, and to provide consultation and recommendation as issues arise.

ECS is not responsible for the conclusions, opinions, or recommendations of others based on the data in this report.

APPENDIX A – Drawings

Site Location Diagram Site/Regional Geology Diagram Boring Location Diagram Section Line AA Subsurface Soil Profile Section Line BB Subsurface Soil Profile

7		
<u>+</u>		
	Topsoil	
•••		
	SM	
	SP	
	Gr	
	SM	
	SP	
EOB @15.0'	l	

DC DPR Therapeutic Center - Geotech										
DLR Group										
3030 G Street, SE, Washingto	on, District of Colu	umbia 20019								
37:2962	Date:	02/17/2021								

		Ť.	
	Topsoil 10		Topsoil
	6		sc
	0	////	
			/
/	CL		GL
	11		
			/
	13		
	14		
	16	EOB @15.0'	1
1			
	CL		
1	· · · · · · · · · · · · · · · · · · ·		
	SP		
-			
-			
-			
_			
-			
-			
-			
-			
-			
-			
- '			
	Se	ction L	ine B-B
	DC DPR Therap		
Ĩ		.R Grou	

37:2962

Date:

02/17/2021

APPENDIX B – Field Operations

Reference Notes for Boring Log Subsurface Exploration Procedure: Standard Penetration Testing (SPT) Boring Log ECS-1 through ECS-4 Boring Log IT-1 through IT-6 Infiltration Testing Procedures Infiltration Test Results

REFERENCE NOTES FOR BORING LOGS

MATERIAL ^{1,}	2			D	RILLING	SAMPLING S	SYMB0	OLS & A	BBREVI	ATIONS		
	ASPH	ALT	SS	Split Spoo	n Sampler	r	PM	Pressur	emeter T	est		
			ST	Shelby Tu	be Sample	ər	RD	Rock Bi	t Drilling			
	CONC	RETE	WS	Wash Sam	ple				ore, NX, I	-		
a y jake			BS	Bulk Samp		-			•	covery %		
o eo a i	GRAV	EL	PA	Power Aug		mple)	RQD	Rock Q	uality Des	signation %		
7700			HSA	Hollow Ste	m Auger							
XWX	TOPS	OIL				PARTICLE SI			ΑΤΙΟΝ			
	VOID		DESIGNA	TION		CLE SIZES			AHON			
			Boulders	3	12 inc	ches (300 mm) or lar	ger				
	BRICK	ζ.	Cobbles		3 inch	nes to 12 inch	, es (75	mm to :	300 mm)			
0	4000		Gravel:	Coarse	³⁄₄ incl	h to 3 inches (19 mn	n to 75 n	nm)			
00005	AGGR	EGATE BASE COURSE		Fine 4.75 mm to 19 mm (No. 4 sieve to ³ / ₄ inch)								
100 A	FILL ³	MAN-PLACED SOILS	Sand:	Coarse		mm to 4.75 mi	•			,		
N.A.				Medium		mm to 2.00 n	``			,		
144	GW	WELL-GRADED GRAVEL gravel-sand mixtures, little or no fines		Fine		mm to 0.425				sieve)		
	GP	POORLY-GRADED GRAVEL	Silt & Cla	ay ("Fines")	<0.07	'4 mm (smalle	r than	a No. 20	00 sieve)			
	Ċ.	gravel-sand mixtures, little or no fines								- r	-	
	GM	SILTY GRAVEL		COHESIVE	SILTS &	CLAYS				COARSE	FINE	
		gravel-sand-silt mixtures	UNCO	NFINED	F		7			GRAINED (%) ⁸	GRAINED (%) ⁸	
142	GC	CLAYEY GRAVEL		RESSIVE	SPT⁵	CONSISTEN		Alvi	CONT	(%)	(%)	
92		gravel-sand-clay mixtures		атн, Q Р ⁴	(BPF)	(COHESIVE		Trace	e	<u><</u> 5	<u><</u> 5	
	SW	WELL-GRADED SAND gravelly sand, little or no fines).25	<3	Very Sof	I.	Dual	Symbol	10	10	
	SP	POORLY-GRADED SAND		- <0.50	3 - 4	Soft			W-SM)			
	01	gravelly sand, little or no fines		- <1.00	5-8	Firm Stiff		With		15 - 20	15 - 25	
	SM	SILTY SAND		- <2.00	9 - 15 16 - 30			Adjeo (ex: "S		<u>></u> 25	<u>></u> 30	
A A A A A A A A A A A A A A A A A A A		sand-silt mixtures		- <4.00	31 - 50	Very Stiff Hard		(ex.)	Silly)			
1.1.1.	SC	CLAYEY SAND		- 8.00	>50	Very Hard	4				c	
hip h		sand-clay mixtures	>0	3.00	200	very nare				ATER LEVELS		
	ML	SILT non-plastic to medium plasticity		C CANDO		OHESIVE SIL	то	Ā	WL	Water Level (,, ,	
	ML				& NUN-C		.15			(WS) While		
	МН	ELASTIC SILT high plasticity	,	SPT⁵		DENSITY		शाए		(WD) While	-	
///	CL			<5	,	Very Loose		₹	SHW	Seasonal Hig		
111	01	low to medium plasticity	5	5 - 10		Loose		-	ACR	After Casing		
1	СН	FAT CLAY	1	1 - 30	M	edium Dense		$\underline{\underline{\nabla}}$	SWT	Stabilized Wa	ater lable	
		high plasticity	3	1 - 50		Dense			DCI	Dry Cave-In		
	OL	ORGANIC SILT or CLAY non-plastic to low plasticity		>50		Very Dense			WCI	Wet Cave-In		
5 5 5 200, 100 m 2 au 80 u 2 au 90 au 2 au 20, m 20,	ОН	ORGANIC SILT or CLAY high plasticity										
	РТ	PEAT										

¹Classifications and symbols per ASTM D 2488-09 (Visual-Manual Procedure) unless noted otherwise.

³Non-ASTM designations are included in soil descriptions and symbols along with ASTM symbol [Ex: (SM-FILL)].

⁴Typically estimated via pocket penetrometer or Torvane shear test and expressed in tons per square foot (tsf).

⁷Minor deviation from ASTM D 2488-09 Note 16.

⁸Percentages are estimated to the nearest 5% per ASTM D 2488-09.

Reference Notes for Boring Logs (03-22-2017)

²To be consistent with general practice, "POORLY GRADED" has been removed from GP, GP-GM, GP-GC, SP, SP-SM, SP-SC soil types on the boring logs.

⁵Standard Penetration Test (SPT) refers to the number of hammer blows (blow count) of a 140 lb. hammer falling 30 inches on a 2 inch OD split spoon sampler required to drive the sampler 12 inches (ASTM D 1586). "N-value" is another term for "blow count" and is expressed in blows per foot (bpf).

⁶The water levels are those levels actually measured in the borehole at the times indicated by the symbol. The measurements are relatively reliable when augering, without adding fluids, in granular soils. In clay and cohesive silts, the determination of water levels may require several days for the water level to stabilize. In such cases, additional methods of measurement are generally employed.

SUBSURFACE EXPLORATION PROCEDURE: STANDARD PENETRATION TESTING (SPT) ASTM D 1586 Split-Barrel Sampling

Standard Penetration Testing, or **SPT**, is the most frequently used subsurface exploration test performed worldwide. This test provides samples for identification purposes, as well as a measure of penetration resistance, or N-value. The N-Value, or blow counts, when corrected and correlated, can approximate engineering properties of soils used for geotechnical design and engineering purposes.

SPT Procedure:

- Involves driving a hollow tube (split-spoon) into the ground by dropping a 140-lb hammer a height of 30-inches at desired depth
- Recording the number of hammer blows required to drive split-spoon a distance of 12 inches (in 3 or 4 Increments of 6 inches each)
- Auger is advanced* and an additional SPT is performed
- One SPT test is typically performed for every two to five feet
- Obtain two-inch diameter soil sample

*Drilling Methods May Vary— The predominant drilling methods used for SPT are open hole fluid rotary drilling and hollow-stem auger drilling.

CLIENT DLR Gr							PROJECT NO.: 37:2962			BORING B-1	NO.:	SHEET: 1 of 2		
	CT NAN	/IE:					DRILLER/	CONTR				1012		LCC
DC DPF	Therap	eutic (Center	- Geote	ch		Connelly	and Ass	ociate	es, Inc.		1		
SITE LC 3030 G			shingt	on, Dist	trict of Columbia 20019							LOS	S OF CIRCULATION) Noox
NORTH	HING:		1	EA	ASTING:	STATION:			SU 34		LEVATION:	BO		
	ER		î	_						Ē		Plastic Limit Water Content Liquid Lim X		
(FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)						ELEVATION (FT)	.9/9		ANDARD PENETRATIC	
DЕРТН (FT)	LE N	APLE	LE D	DVEF	DESCRIPTION C	OF MATERIAL			WATER LEVELS	ATIO	BLOWS/6"		QUALITY DESIGNATIO	N & RECOVERY
DE	AMP	SAN	AMP	RECO					WAT	ELEV	BL		REC	
	S		S										LIBRATED PENETROM CONTENT] %	ETER TON/SF
	S-1	SS	18	8	Topsoil Thickness[6.00			-/			8-9-10 (19)	⊗ ₁₉		
					(SM) SILTY SAND, trac roots, dark brown, mo									
						Jist, meulu	in dense			-	5-6-12			
	S-2	SS	18	14	(SC) CLAYEY SAND, ora	angish brov	wn				(18)	Q18		
5-					moist, medium dense	-	,	///	1	29-				
	S-3	SS	18	14				///	1	23	13-14-17 (31)		31	
								///		-	(31)			
								///		-				
					(SM) SILTY SAND, trac]]	4-5-6		re	2 40/1
10-	S-4	SS	18	6	roots, tan to brownish loose to medium den		ioist,			24 -	(11)	Ø1111.8	Lo Lo	2.4%]
	-				loose to medium den	se				24 -				
										-				
										-				
										-	5-7-6			
	S-5	SS	18	14							(13)	Ø ₁₃		
15-	-									19-				
-	-										0.40.44			
	S-6	SS	18	10						-	8-10-11 (21)	⊗ ₂₁		
20-	-									14-				
										-				
-														
-														
-	S-7	SS	18	12							5-6-12 (18)	⊗ ₁₈		
25-										9-				
-														
-										-				
-	S-8	SS	18	10	(SP) SAND WITH GRAV	/EL. orangi	sh				6-8-11 (19)	⊗ ₁₉		
30-					brown, moist to wet,	-				4-	. ,			
							GE	: : : : :					: :	: :
	Tł	HE STR	ATIFICA	TION LI	NES REPRESENT THE APPROXI			BETWEEN	I SOIL	TYPES. IN	I-SITU THE TR	RANSITION M	AY BE GRADU	AL.
	NL (Firs	st Enco	ounter	ed)	29.00	BOR	ING START	ED: J	an 28	2021	CAVE IN	DEPTH:	None Observe	ed
۷ ۱	NL (Cor	mpleti	on)		Grouted	BOR	ING		30	2021			Auto	
𝗶 WL (Seasonal High Water)							IPLETED:			2021	HAMME	N ITPE:	Auto	
<u>ک</u> ۱	NL (Sta	bilizec	4)			EQU ATV	IPMENT:		.ogg Por	ED BY:	DRILLING	METHOD:	3.25 HSA	
	(,		GEC					06				

CLIEN DLR Gr						PROJEC 37:296	CT NO.: 2		BORING NO.: B-1		SHEET: 2 of 2	FOG
PROJE	CT NAN						R/CONTRA					LUS
-	R Therap		Center -	Geote	ech	Connel	ly and Asso	ciate	s, Inc.		1	
	DCATIOI i Street,		shingto	on, Dist	trict of Columbia 20019						LOSS OF CIRCULATIO	א איז
NORTI		1	1		ASTING: STATION:			SURFACE ELEVATIO			BOTTOM OF CASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL	FERIAL			ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Conte X	ION BLOWS/FT
-	-				(SP) SAND WITH GRAVEL, orang brown, moist to wet, medium o				-			
- 35-		SS	18	10					- - -1-	5-6-9 (15)	⊗ ₁₅	
-	-								-			
-					(SC) CLAYEY SAND, tan, moist, n dense	nedium			-	8-8-10		
40-		SS	18	12	END OF DRILLING AT 40.0	FT			-6-	(18)	⊗ ₁₈	
-	-								-			
45-	-								- - -11 -			
-	-											
-	-								-			
50-	-								-16			
-	-								-			
55-	-								- - -21 -			
-	-								-			
-	-											
60-	-								-26-			
	-											
	ті				NES REPRESENT THE APPROXIMATE BOUN	DARYLINE	S BETWEEN	SOII	TYPES IN	-SITU THE TR	ANSITION MAY BE GRADI	JAI
	WL (Firs				20.00	RING STAR			2021	CAVE IN		
	WL (Coi				Grautad	RING						
	WL (Sea	-		Vater)	CON	MPLETED :			2021	HAMME	R TYPE: Auto	
	WL (Sta			7	EQU	JIPMENT:		oggi or	ED BY:	DRILLING	G METHOD: 3.25 HSA	
<u> </u>	(- 10		,		ATV GEOTECHN	CAL BC			OG			

IENT R Gro							PROJECT NO 37:2962				10.:	SHEET: 1 of 1		
	DUP CT NAN	/IE:					37:2962 Driller/CC	ONTRA				1011		LCO
DPR	Therap	eutic C	Center -	Geote	ch		Connelly an					1		
	CATIOI Street		shinata	n Dict	rict of Columbia 20019							LOS	S OF CIRCULATION	Σιο
	IING:	5L, Wa	Shingt			STATION:	ON: S				LEVATION:	BOTTOM OF CASING		
_	BER	ЪЕ	(NI)	î						FT)		Plastic Limit Water Content X		nt Liquid Limit ────△
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF	MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	ROCK C	ON BLOWS/FT DN & RECOVERY METER TON/SF	
_	S-1 SS 18 18 Topsoil Thickness[4.00"] (GP FILL) GRAVEL WITH SAN moist, medium dense (SM FILL) SILTY SAND, trace).				5-8-12 (20) 4-6-5	[FINES	CONTENT] %	
-							ics,			-				
	52		10	17	trace gravel, dark brow dense		edium			35-	(11)			
-	S-3	SS	18	12	(FILL) Brick, red, moist, dense	, medium				-	8-14-22 (36)		⊗ ₃₆	
					(SM) SILTY SAND, light k tan, moist, loose to me		-			-	6-6-7			0.00/1
 10 <i></i> _	S-4	SS	18	14						30 -	(13)	Ø13 14.8	[2	0.9%]
- 15-	S-5	SS	18	16						25-	5-4-6 (10)	⊗ ₁₀		
					(SC) CLAYEY SAND, trace		ange			- - - - -				
- 20	S-6	SS	18	7	to light brown, moist, lo	oose	2		N N	20-	4-3-3 (6)	⊗ ₆		
							2			20				
 25	S-7	SS	18	18			2			15-	3-4-5 (9)	⊗9		
-					(CL) LEAN CLAY WITH S/ orangish brown, moist,		gravel,							
	S-8	SS	18	16			/			- - 10-	5-8-7 (15)	⊗ ₁₅		
30 -					END OF DRILLING	G AT 30.0 FT	•			10-				
7 \^			ATIFICA ountere		NES REPRESENT THE APPROXIM 19.00									
	VL (Firs			eu)	Grouted		G STARTED	: Ja	in 27	2021	CAVE IN	DEPTH:	None Observ	ea
	-	-	High V	Vater)	Giotecu	BORING COMPL EQUIPN	ETED:			2021 ED BY:	HAMME		Auto	
7 W	VI (Sta	bilized)				*		OR	01.	DRILLING	METHOD:	3.25 HSA	

LIENT							PROJECT N	0.:		BORING	NO.:	SHEET:		
		45					37:2962			B-3		1 of 2		ECo
				C			DRILLER/CO							
	Therap CATIO		enter-	- Geote	cn		Connelly ar	nd Asso	ociate	es, Inc.				
			shingt	on, Dist	rict of Columbia 20019							L I	OSS OF CIRCULATION	2100%
		02, 110	5111150			STATION:			SL	JRFACE E	LEVATION:			
								41.0					BOTTOM OF CASING	
	~											Plast	ic Limit Water Conten	t Liquid Limit
	SAMPLE NUMBER	Щ	SAMPLE DIST. (IN)	Î					ILS I	Ê	-	T luse	X•	∆
DЕРТН (FT)		SAMPLE TYPE	OIST.	RECOVERY (IN)					WATER LEVELS	elevation (FT)	BLOWS/6"		STANDARD PENETRATIO	
PTF		APLI	L L L	OVE	DESCRIPTION OF	- MAIERIAL			ËR	ATIC	×0		CK QUALITY DESIGNATION	& RECOVERY
DE	MP	SAN	MP	REO					MAI		BI		- REC	
	S		S									-		ETER TON/SF
_	6.4		18	16	Topsoil Thickness[4.00'	"]				-	4-5-4		NES CONTENT] %	
	S-1	SS			(SC FILL) CLAYEY SAND	-	vel,			-	(9)	⊗9		
_	-				contains roots, reddish	n brown, me	oist,			-				
_			10	4.5	loose		. /	"			4-5-6		20	1932 0.3%
-	S-2	SS	18	15	(CH) FAT CLAY WITH SA	ND, trace g	gravel,		1	-	(11)	⊗ ₁₁	²⁰ × 23.6	
					contains roots, light bro	own, moist	, stiff		1					
5-	6.0	~~			(SC) CLAYEY SAND, trac	ce gravel. ta	an to	[]/././	1	36-	5-6-6			
_	S-3	SS	18	14	orangish brown, moist,	-		[/././	1	-	(12)	⊗ ₁₂		
_					dense	,	.ca.a	////		_				
-								////		-				
-								////						
-	S-4	SS	18	14				///			6-6-7 (13)	⊗ ₁₃		
10-								///		31 –	(-)			
_								///	1					
-								///	1	-				
-								///	1	-				
_								[]]]	1	-				
-	S-5	SS	18	14				[]]]		-	4-3-5 (8)	⊗8		
15 -								[]]]	ł	26-	(0)			
_								[]]]						
-								[]],		-				
_	1							///,		-				
-	1							////						
_	S-6	SS	18	10				////		-	4-4-4	⊗8		
20-								///		21-	(8)	18		
-								///		_				
-								///	1	-				
_								///	1					
	-							[]]]	1	-				
_	S-7	SS	18	14				[]//	1	-	6-12-10	©₂		
25-	5-7	- 33	10	14				[]./.	1	16-	(22)		2	
20					(SP) SAND WITH GRAV	-								
_	1				brown, moist to wet, v	ery loose to	0							
	1				medium dense									
_	-													
_	6.0		10	4.0							10-12-14		^	
20	S-8	SS	18	16						44	(26)		26	
30-	-									11-		/		
					CONTINUED ON	NEXT PAC	GE	· · · · · · · ·						
	T	HE STR.	ATIFICA	TION LI	NES REPRESENT THE APPROXIM			TWEEN	I SOIL	TYPES. IN	I-SITU THE TR	ANSITION	MAY BE GRADUA	AL.
V V	VL (Fir	st Enco	ounter	ed)	19.00	BORIN	IG STARTED); Ja	an 27	2021	CAVF IN	DEPTH	None Observe	ed
T Mu (Convertation) Grouted												AVE IN DEPTH: None Observed		
The feetible result of the second sec						BORIN		Ja	an 27	2021	HAMME	R TYPE:	Auto	
V V	VL (Sea	asonal	High V	Vater)			PLETED: MENT:		066	ED BY:				
V V	VL (Sta	bilized	1)						OGG		DRILLING	6 METHO	D: 3.25 HSA	
					650	TECHNIC				06	1			

CLIENT DLR Gro							PROJECT N 37:2962	0.:		BORING NO.: B-3		SHEET: 2 of 2		
PROJE		/IE:					DRILLER/CO	ONTRA	сто	R:				LUS
DC DPR			Center	Geote	ch		Connelly an	d Asso	ciate	s, Inc.		I		~
	Street,		shingt		trict of Columbia 20019	1						LOS	S OF CIRCULATION	<u>>100</u> %
NORTH	ling:		1	EA	ASTING:	STATION:			SL 41		LEVATION:	BC	TTOM OF CASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL	-		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Liquid Lir X STANDARD PENETRATION BLOWS/F ROCK QUALITY DESIGNATION & RECOVER RQD RQD CALIBRATED PENETROMETER TON/SI [FINES CONTENT] %		→ N BLOWS/FT & RECOVERY
-	-				(SP) SAND WITH GRAV brown, moist to wet,					-				
-	S-9	SS	18	10	medium dense					-	6-4-5 (9)	Ø9		
35	-									6				
-	S-10	SS	18	12						-	4-WOH-3 (3)	\otimes_3		
40-					END OF DRILLI	NG AT 40.0 F	т			1-				
45														
50										-9- - - - - - - - - - - - - - - - - - -				
55										-14 - - - - - - - - - -				
60-	-									-19				
	LTI	HE STR/	L ATIFICA	L TION LI	NES REPRESENT THE APPROXI	MATE BOUND	ARY LINES BE	TWEEN	SOIL	TYPES. IN	I-SITU THE TR	I ANSITION N	IAY BE GRADUA	L
V V	ed)	19.00	BORI	NG STARTED	: Ja	n 27	2021	CAVE IN	DEPTH:	None Observe	d			
V V	VL (Coi	npleti	on)		Grouted	BORII		Ja	n 27	2021	HAMME	R TYPE:	Auto	
							PLETED: PMENT:			ED BY:				
⊻ v	VL (Sta	bilized	1)		GEO			PO	OR		DRILLING	METHOD:	3.25 HSA	

CLIENT DLR Gro							ROJECT NO.: 7:2962	BORING NO.: B-4		SHEET: 1 of 1				
PROJEC	CT NAN					DF	RILLER/CONTRA	СТО	R:					
DC DPR			Center -	Geote	ch	Co	onnelly and Asso	ciate	s, Inc.					
			shingto	on, Dist	rict of Columbia 20019						LC	DSS OF CIRCU	ILATION	<u>>100</u> 2)
NORTH	HNG:			EA	STING: STAT	TION:	I	SURFACE ELEVATION: 43.0			BOTTOM OF CASING			
	ER		(z	=					Ē		Plastic Limit Water Content Liquid Limit X			Limit
(FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)					elevation (FT)	"9/6"	-		NETRATION BLOWS,	/FT
DЕРТН (FT)	PLE N	MPLE	PLE D	COVE	DESCRIPTION OF MAT	TERIAL		WATER LEVELS	VATIC	BLOWS/6"	ROC	RQD	IGNATION & RECOV	ERY
	SAM	SA	SAM	REC				٨	ELE	ш			NETROMETER TON	/SF
			18	17	Topsoil Thickness[4.00"]					3-4-5	[FIN	ES CONTENT] %		
-	S-1	SS	10	1/	(SC FILL) CLAYEY SAND, cor	ntains	/			(9)	⊗9			
					roots, reddish brown, mois	st, loose								
-	S-2	SS	18	18	(CL) LEAN CLAY WITH SANE	D, light re	ddish			4-4-3 (7)	⊗ 7			
	-				brown, moist, firm to stiff	-			-					
5-	S-3	SS	18	15					38-	4-4-6	⊗ ₁₀			
-			10						-	(10)				
-														
-			4.0	4.6	(SM) SILTY SAND, contains	-				6-8-9			[25.0%]	
10-	S-4	SS	18	16	brown, moist, very loose to dense	o medium	1		33-	(17)	×1173.8	3		
-	-													
									-					
-									-	-				
	S-5	SS	18	15						1-2-1 (3)	Ø3			
15-									28	(5)	Ů			
	-								-					
	-				(CL) LEAN CLAY WITH SANE	D, gray, m	oist,							
					soft to firm					252				
	S-6	SS	18	18						3-5-3 (8)	⊗ ₈			
20-									23-					
-														
-									-					
-	67		10	10					-	2-2-2				
25-	S-7	SS	18	18					18-	(4)	884			
-									-					
									-					
-					(SP) SAND WITH GRAVEL, t	tan to ora	ingish							
	S-8	SS	18	18	brown, moist, dense					8-16-23 (39)		839		
30-					END OF DRILLING AT	T 30.0 FT	÷ :		13-	. ,				
					NES REPRESENT THE APPROXIMATE		LINES BETWEEN	SOIL	TYPES. IN	-SITU THE TR	ANSITION			
	VL (Firs			ed)	None Encountered	BORING	STARTED: Ja	n 27	2021	CAVE IN	N DEPTH: None Observed			
	VL (Cor	-			Grouted	BORING COMPLE	12	n 27	2021	HAMMEI	R TYPE:	Auto		
▼ WL (Seasonal High Water)								DGGI	ED BY:				•	
V V	VL (Sta	bilized)			ATV		OR			S METHOD	7: 3.25 HS	A	

CLIENT: DLR Group)						PROJECT I 37:2962	NO.:		BORING T-1	NO.:	SHEE 1 of 1			
PROJECT N	NAM		ontor	Casta	ah.		DRILLER/C					1			-US
DC DPR The SITE LOCAT	TION	:					Connelly a		ciate	s, inc.					<u>אר מסול</u>
3030 G Stre		E, Wa	shingto		rict of Columbia 20019 STING: ST	ATION:			SL	IRFACE F	LEVATION:		2035 01 0		
	ю. — т								36				BOTTOM	OF CASING	
	BER	ш	2	(7					S	Ê			Plastic Limit V X	Vater Content Liq	uid Limit -∆
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)					WATER LEVELS	elevation (FT)	BLOWS/6"			D PENETRATION BLC	
DEPTI	APLE	AMPL	APLE	ECOVE	DESCRIPTION OF M	IATERIAL			'ATER	EVATI	BLOW		RQD	Y DESIGNATION & RE	COVERY
	SAN	S	SAN	RI					3	EL			CALIBRAT		ron/sf
-			24	12	Topsoil Thickness[4.00"]		,			-	3-3-5-6 (8)		[FINES CONTE	:N1] %	
	5-1	SS	24	12	(SM FILL) SILTY SAND, cor asphalt, brown, moist, lo					-	(0)	⊗ ₈			
– s.	5-2	SS	24	22	dense	050 10 11	lealann			-	3-4-4-5 (8)	⊗8			
					(SP) SAND, contains sligh	t mica r	oddich			-					
5 - S-	5-3	SS	24	20	brown, moist, loose	t mica, i	euuisii			31-	3-3-3-4 (6)	\otimes_6			
	-				(SM) SILTY SAND, contain	s slight	mica,			-	1-1-1-1				
- S·	5-4	SS	24	16	reddish brown, moist, ve	ry loose				-	(2)	8₂			
	5-5	SS	24	16						-	1-1-1-1 (2)	R.	14.8	[33.3%	6]
10	, ,	55	27	10						26 -			14.8		
- s.	5-6	SS	24	17						-	WOH-1-1-1 (2)	₿2			
					(SP) SAND, contains roots	s and mi	ca.			-	2-3-2-2				
- S-	5-7	SS	24	8	reddish brown, moist, ve					-	(5)	\otimes_5			
	5-8		24	-							2-1-3-2				
15 - S-	o-o	SS	24	5	END OF DRILLING	AT 15.0 F	T			21-	(4)	\otimes_4			
										-					
										-					
										_					
20-										16-					
										-					
_										-					
										-					
25										11 -					
										_					
										-					
										-					
30-										6-					
	-+									_					
	TH	E STRA	TIFICA	L TION LI	NES REPRESENT THE APPROXIMAT	E BOUND	ARY LINES B	ETWEEN	l I SOIL	TYPES. IN	I-SITU THE TR	l RANSIT	ION MAY B	E GRADUAL	
⊻ WL((First	Enco	unter	ed)	None Encountere	d BORI	NG STARTE	D: Ja	an 26	2021	CAVE IN	DEPTH	H: 4.00)	
▼ WL((Con	npletio	on)		None Observered			Ja	an 26	2021	HAMME	R ТҮРР	: Aut	0	
V WL (-	Vater)			PLETED: PMENT:			ED BY:					
VWL ((Stab	oilized)			ATV	CAL BOR	Р	OR		DRILLING	5 MET	HOD: 3.2	5 HSA	

CLIENT								ROJECT N 7:2962	10.:		BORING I T-2	NO.:	SHEE 1 of 1			
PROJE	CT NAN						D	RILLER/C		АСТО	R:					EUS
DC DPR			Center ·	- Geote	ch		C	onnelly a	nd Asso	ociate	s, Inc.					
3030 G	Street,		shingt		rict of Columbia 20019									LOSS OF (CIRCULATION	<u>>100</u> %
NORTH	IING:			EA	STING:	STATION	N:			SL 37		LEVATION:		BOTTON	I OF CASING	
	IBER	PE	(IN)	(X)						ELS .	(FT)	_		Plastic Limit N X	Water Content	: Liquid Limit ────△
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION O	F MATERI	IAL			WATER LEVELS	elevation (FT)	BLOWS/6"			RD PENETRATIO	
DEP.	MPLE	SAMP	MPLE	RECOV						NATEI	LE VA ⁻	BLO		RQD		
	SA		SA								ш				TED PENETROM	ETER TON/SF
-	S-1	SS	24	20	Topsoil Thickness[4.00 (CL) LEAN CLAY WITH		ight bi	rown,		1	-	2-2-2-4 (4)	\otimes_4			
					moist, soft to firm (SM) SILTY SAND, light			/				3-3-2-3				
-	S-2	SS	24	18	brown, moist, loose to						-	(5)	⊗₅			
5-	S-3	SS	24	14							32	3-2-3-4 (5)	⊗₅			
											-	2-4-4-6				
	S-4	SS	24	22							-	(8)	⊗ ₈			
	S-5	SS	24	18							-	4-4-5-6 (9)	⊗9	14.5	[36.9%]
10-					END OF DRILLIN	NG AT 10	0.0 FT				27 -					
-											-					
-											-					
15-											22-					
											-					
											-					
20-											17-					
-											-					
-											-					
											-					
25-											12-					
-											-					
-											-					
30-											7-					
	TI	HE STRA	ATIFICA	 	NES REPRESENT THE APPROXI	MATE BOI	UNDAR	/ LINES BF		 I SOII	TYPES. IN	I-SITU THE TR	ANSITI	ON MAY F	BE GRADUA	AL.
∑ v	VL (Firs				None Encount			STARTE			2021	CAVE IN				
V V	VL (Coi	mpleti	on)		None Encoun		ORING			an 76	2021	HAMME			to.	
V V	VL (Sea	asonal	High V	Water)			omple Quipm				ED BY:					
V V	VL (Sta	bilized)			AT	τv		P	OR		DRILLING	6 METI	HOD: 3.2	5 HSA	
					GEC	DTECHI	NICA	L BOR	EHOL	FL	OG					

CLIENT								ROJECT N 7:2962	0.:		BORING I T-3	NO.:	SHEET: 1 of 1		
PROJEC	CT NAN						D	RILLER/C		АСТО	R:				LUS
DC DPR			Center ·	- Geote	ch		C	onnelly a	nd Asso	ociate	s, Inc.				~
3030 G	Street,		shingt		rict of Columbia 20019								LOSS O	F CIRCULATION	<u>) 1007</u>
NORTH	IING:			EA	STING:	STATIO	N:			SL 41		LEVATION:	BOTTO	DM OF CASING	
	BER	ЪЕ	(IN)	î						LS	(F		Plastic Limi X	t Water Content	Liquid Limit ───△
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION O	F MATER	IAI			WATER LEVELS	elevation (FT)	BLOWS/6"		DARD PENETRATION	
DEPT	MPLE	AMPI	MPLE	ECOV		i inii ii Eini				ATER	EVAT	BLOV)	
	SAI	0	SAI	~						5				RATED PENETROME	TER TON/SF
-					Topsoil Thickness[5.00)"]		/			-	2-4-4-3	[FINES CO	NTENT] %	
-	S-1	SS	24	18	(SC) CLAYEY SAND, cor			1	////		-	(8)	⊗ ₈		
-	S-2	SS	24	17	reddish brown, moist, dense	loose t	o meo	lium	[] []			4-5-5-7	⊗ ₁₀		
	5-2	55	24	1/					[///		-	(10)			
5-	S-3	SS	24	20	(36-	4-3-4-5 (7)	⊗ 7		
-					(SM) SILTY SAND, cont light brown, moist, loc	-	-	-			-				
-	S-4	SS	24	20	dense						-	5-5-4-6 (9)	⊗,		
												4-6-6-7			
-	S-5	SS	24	14							-	(12)	⊗ _{12 13.} 9	[21.59	6]
10-					END OF DRILLIN	IG AT 10	0.0 FT				31-				
-															
-															
											-				
15-											26-				
											-				
-															
20-											21-				
-											-				
											-				
-											-				
25-											16-				
-															
-															
-															
30-											11-				
∠ v	VL (Firs				NES REPRESENT THE APPROXII None Encount			STARTED			2021	CAVE IN		.00	L
	VL (Cor			/	None Encoun	D). Ji	an 20	2021		UEFIH: 3.	.00	
	VL (Sea			Water)			ORING OMPLE		Ja	an 26	2021	HAMME	R TYPE: A	uto	
	VL (Sta		-					IENT:			ED BY:	DRILLING	6 METHOD: 3.	.25 HSA	
	_ (310		'		GEC		TV NICA	L BORI		or E L(OG				

CLIENT DLR Gro								PROJECT NO 37:2962	D.:		BORING M T-4	10.:	SHEET: 1 of 1		
PROJE				.				DRILLER/CC							-63
DC DPR			enter -	Geote	ch			Connelly an	d Asso	ciates	s, Inc.				~
3030 G	Street,		shingto		trict of Columbia 20019								LOSS OF CIRCU	LATION	<u>>1007</u> >
NORTH	HNG:		I	EA	ASTING:	STATIC	ON:			SU 44.		LEVATION:	BOTTOM OF C	ASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION O	DF MATE	RIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water X	IETRATION BI	—∆ Lows/ft Recovery
-	S-1	SS	24	16	Topsoil Thickness[4.00 (SC FILL) CLAYEY SAND	D, redd	lish	/			-	3-5-5-4 (10)	<i>⊗</i> ₁₀		
	S-2	SS	24	15	brown, moist, loose lo	ose					-	4-3-3-3 (6)	⊗ ₆		
5-	S-3	SS	24	18	(CL) LEAN CLAY WITH roots, light brown, mc						 39	3-4-5-4 (9)	₿9		
-	S-4	SS	24	18		,					-	4-5-7-7 (12)	⊗ ₁₂		
-	S-5	SS	24	15				/			-	5-5-6-8 (11)	⊗ ₁₁ ¹⁵ ×	34	[71.3%]
10-	S-6	SS	24	16	(CL) LEAN CLAY, trace s brown, moist, stiff to v			· /			34 -	6-6-7-4 (13)	⊗ ₁₃		
-	S-7	SS	24	24		- /					-	6-7-7-9 (14)	® ₁₄		
15-	S-8	SS	24	24		NG AT 1	15.0 FT					7-8-8-10 (16)	⊗ ₁₆		
20-															
	L TH	HE STR/	l Atifica	l TION LI	NES REPRESENT THE APPROXII	MATE BO	OUNDAF	RY LINES BET	WEEN	SOIL	TYPES. IN	-SITU THE TR	L RANSITION MAY BE GE	RADUAL	
V V	VL (Firs				None Encoun			G STARTED			2021	CAVE IN			
T 1	VL (Coi	npleti	on)		None Encoun		BORING				2024				
V V	VL (Sea	asonal	High V	Vater)			COMPL	ETED:			2021	HAMME	R TYPE: Auto		
	VL (Sta		-	,			EQUIPN ATV	MENT:)gge Or	ED BY:	DRILLING	6 METHOD: 3.25 HS	A	
	,		-		GEO			AL BORE			DG	1			

CLIENT DLR Gro							PROJECT I 37:2962		ľ	BORING I T-5	NO.:	SHEET 1 of 1			7
PROJEC			`ontou	Casta	ah		DRILLER/C								2
DC DPR			.enter -	Geote	cn		Connelly a		clate	s, inc.					
3030 G	Street,		shingto		rict of Columbia 20019								LOSS OF CIRCL	ILATION	<u>>100%</u>
NORTH	ling:			EA	STING: STATI	ON:			SL 41		LEVATION:		BOTTOM OF (CASING	
<u> </u>	1BER	ЪЕ	(IN)	(Ž					ELS	(FT)	=	PI	lastic Limit Water X	Content Liquid Lir ●	nit
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATE	ERIAL			WATER LEVELS	elevation (FT)	BLOWS/6"			NETRATION BLOWS/F1	
DEP	MPL	SAMI	MPL	SECO					NATE	ELEVA	BLG		RQD REC		
	S/		/S										CALIBRATED PE	ENETROMETER TON/SI	F
-	S-1	SS	24	10	Topsoil Thickness[5.00"]					-	5-3-5-3 (8)	⊗8			
-					(SM FILL) SILTY SAND, conta brick, brown, moist, loose	ains						o o			
-	S-2	SS	24	14	(CL) LEAN CLAY, trace gravel light brown and gray, moist,		e sand,			-	2-3-3-4 (6)	⊗ ₆			
5-	S-3	SS	24	16						36-	3-4-3-4 (7)	⊗7			
	S-4	SS	24	15						-	3-3-4-3 (7)	⊗7			
										-	4-4-3-3			[33.1%]	
10-	S-5	SS	24	16						31 –	(7)	87	18.8	[00.176]	
-	S-6	SS	24	24						-	3-2-3-3 (5)	⊗₅			
	S-7	SS	24	24							3-4-4-3 (8)	⊗ ₈			
15-	S-8	SS	24	24	END OF DRILLING AT	15.0 F	т			26	4-3-2-4 (5)	\otimes_{5}			
	-														
	-									-					
20-	-									 21-					
-	-									-					
-										-					
25-										 16					
-	-									-					
	-														
-										-					
30-	-									11 -					
	I Tł	HE STR/	atifica [:]	i Tion Li	NES REPRESENT THE APPROXIMATE B	OUNDA	RY LINES BI	ETWEEN	l SOIL	TYPES. IN	-SITU THE TR	L RANSITIC	ON MAY BE G	RADUAL	
∠ v	VL (Firs	st Enco	ounter	ed)	None Encountered	BORIN	IG STARTE	D: Ja	an 26	2021	CAVE IN	DEPTH:	: 9.00		_
V V	VL (Coi	npleti	on)		None Encountered	BORIN		l:	an 26	2021	HAMME	R TYPE.	Auto		
V V	VL (Sea	asonal	High V	Vater)		-	LETED: MENT:			ED BY:					
⊻ v	VL (Sta	bilized)			ATV		Р	OR		DRILLING	6 METH	IOD: 3.25 HS	A	
					GEOTECI	HNIC	AL BOR	EHOL	FLC	DG					

CLIEN DLR Gr	oup						PROJECT N 37:2962		r	BORING N T-6	10.:	SHEET: 1 of 1		FCo
	CT NAN R Therap		Contor	Geote	ch		DRILLER/C Connelly a							-05
	DCATIO		Lenter	Geole			conneny a		ciate	s, me.		1055	OF CIRCULATIO	
		SE, Wa	shingt		trict of Columbia 20019							1035	OF CIRCULATION	
NORTI	HING:			EA	ASTING: STAT	ION:			SL 39		LEVATION:	BOT	FOM OF CASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MAT	ERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	X	IDARD PENETRAT	DN & RECOVERY
-	S-1	SS	24	13	Topsoil Thickness[5.00"] (SC FILL) CLAYEY SAND, trad	ce grav	vel,				2-4-3-2 (7)	FINES C	ONTENT] %	
-	S-2	SS	24	12	contains roots, dark reddisl moist, loose	h brov	vn,			-	2-3-3-3 (6)	\otimes_6		
5-	- - - S-3	SS	24	16						34 -	3-3-4-5 (7)	₿7		
-	- - S-4	SS	24	24	(CL) LEAN CLAY, trace sand, to gray, moist, stiff	light l	orown				4-3-6-6 (9)	\$9		
-	- - S-5	SS	24	22							4-5-6-7 (11)	⊗ ¹² ×	27	[57.5%]
10-	-				END OF DRILLING AT	10.0 F	т			29	. ,	11.0		
	-									24 - - - - - - - - - - - - - - - - - - -				
	Т	HE STR/	ATIFICA	TION LI	NES REPRESENT THE APPROXIMATE E	BOUND	ARY LINES BE	TWEEN	SOIL	TYPES. IN	-SITU THE TR	ANSITION MA	Y BE GRADU	JAL
	WL (Fir			ed)	None Encountered	BORIN	NG STARTEI	D: Ja	in 26	2021	CAVE IN	DEPTH: 3	8.50	
	WL (Co	-		Matar)	None Encountered	BORIN	NG PLETED:	Ja	in 26	2021	HAMME	R TYPE:	Auto	
	WL (Sea WL (Sta		-	vater)		EQUI	PMENT:			ED BY:	DRILLING	METHOD: 3	8.25 HSA	
	vv L (Jld	Sinzeu	•/		GEOTEC				or FLC	DG				

INFILTRATION TEST PROCEDURE

JOHNSON PERMEAMETER™

DOEE STORMWATER MANAGEMENT GUIDEBOOK – JAN 2020

Each hole is prepared in general accordance with the information contained in the Johnson Permeameter[™] Instruction Manual dated February 2, 2019. A schematic of the equipment used is included in Appendix D for reference. The final design rate chosen is ultimately the discretion of the design engineer; however, the Ksat value produced in typically an average of the last three to four readings taken during the test. The results of each test are summarized in this report and included in this Appendix for reference.

Infiltration Test Procedure:

- advance SPT soil boring to at least two feet below approximate test elevation
- observe SPT soil boring for groundwater/rock (including approximately 24 hour groundwater readings
- advance auger probe boring (no samples taken) to the approximate test elevation
- perform a constant head infiltration test and measure Ksat values

Constant-Head	Borehole Perme	ameter Test	Solutio	on: R. E. Glover (Dee	p WT or Imp	ermeable Laye	er)	File Name:		
Project Name	DC DPR Therapeutic Co	enter - Geotech	Boring No:	IT-1/AP-1		So	olution and Terr	minology (R. E. G	ilover solution)	*
Project No	37_2962		Investigators:	DHS		K _{sat} = Q[sinh ⁻¹ (H	I/r) - (r ² /H ² +1) ^{.5}	+ r/H]/(2πH ²) [B	asic Glover solu	ition]
Project Location:			Date:	2-4-2021		K _{satB} = QV[sinh ⁻¹	(H/r) - (r ² /H ² +1)	^{.5} + r/H]/(2πH ²)	[Tempcorrecte	ed]
Boring Depth	8 ft.	(Specify units)	WCU Base Ht. h:	10.0	cm***	K _{satB} : Saturate	d Hydraulic Cor	nduct. @ base Tm	np. T _B °C:	20
Boring Diameter:	17.78	cm	WCU Susp. Ht. S:	45.0	cm	Q: Rate of flor	w of water from	the borehole		
Boring Radius r:	8.89	cm	Const. Wtr. Ht. H:	55.0	cm	H: Constant h	eight of water i	n the borehole		
Soil Temperature T:	2	°C	H/r**	6.2		r: Radius of t	he cylindrical bo	orehole		
Dyn. Visc. @ T:	0.001674	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s		-	[•] @ T °C/Dyn. Vis		-
Reservoir Volume	Time (12 hr)	Volume Out		ed Time	Flow Rate			Equivalent Value		
(ml)	(h:mm:ss A/P)	(ml)	Total (min)	Interval (min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,250										
3,010					48.0		1.17E-04	10.1	0.17	0.3
2,910					20.0		4.89E-05	4.2	0.07	0.1
2,810					20.0		4.89E-05	4.2	0.07	0.1
2,780					6.0		1.47E-05	1.3	0.02	0.0
2,780					0.0		0.00E+00	0.0	0.00	0.0
2,780	12:12:00 PM	0			0.0		0.00E+00	0.0	0.0	
2,780	12:17:00 PM	0			0.0		0.00E+00	0.0	0.0	
2,780		0			0.0		0.00E+00	0.0	0.00	0.0
2,780	12:27:00 PM	0	45.00		0.0		0.00E+00	0.0	0.00	0.0
2,780			50.00		0.0		0.00E+00	0.0	0.00	0.0
2,780		0			0.0		0.00E+00	0.0	0.00	0.0
2,780	12:42:00 PM	0	00.00		0.0		0.00E+00	0.0	0.00	0.0
2,780			65.00	5.00	0.0	0.0	0.00E+00	0.0	0.00	0.0
2,780		0			0.0		0.00E+00	0.0	0.00	0.0
2,780	12:57:00 PM	0	, 3.00		0.0		0.00E+00	0.0	0.00	0.0
2,780					0.0		0.00E+00	0.0	0.00	0.0
2,780		0	00.00		0.0		0.00E+00	0.0	0.00	0.0
2,780	1:12:00 PM	0	90.00	5.00	0.0	0.0	0.00E+00	0.0	0.00	0.0
Natural Moisture:	14.8	Consistence:	Very Loose	Enter K _{satB} Value		0.0		0.0	0.00	0.0
USDA Txt./USCS Class: Struct./% Pass. #200:		WT Depth Init. Sat. Time:	Not Encountered	Data Logger No:		, , , , , , , , , , , , , , , , , , ,		analyzing the Flow nal three to five sta	•	ïme Graph an

						ermeable Laye	.,	File Name:		
Project Name	DC DPR Therapeutic Ce	enter - Geotech	Boring No	IT-2/AP-2		Sc	olution and Teri	minology (R. E. G	lover solution)*	ķ
Project No	37_2962		Investigators:	DHS		$K_{sat} = Q[sinh^{-1}(H)]$	/r) - (r ² /H ² +1) ^{.5}	+ r/H]/(2πH ²) [Ba	asic Glover solu [.]	tion]
Project Location:			Date:	2-4-2021		K _{satB} = QV[sinh ⁻¹	(H/r) - (r ² /H ² +1)	^{.5} + r/H]/(2πH ²) [Tempcorrecte	d]
Boring Depth	8 ft.	(Specify units)	WCU Base Ht. h:	10.0	cm***	K _{satB} : Saturate	d Hydraulic Cor	nduct. @ base Tm	p. T _B °C:	20
Boring Diameter:	17.78	cm	WCU Susp. Ht. S:	45.0	cm	Q: Rate of flow	w of water from	the borehole		
Boring Radius r:	8.89	cm	Const. Wtr. Ht. H:	55.0	cm	H: Constant h	eight of water i	n the borehole		
Soil Temperature T:	2	°C	H/r**:	6.2		r: Radius of t	he cylindrical b	orehole		
Dyn. Visc. @ T:	0.001674	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m∙s			⁻ @ T [°] C/Dyn. Viso		
Reservoir Volume	Time (12 hr)	Volume Out		d Time	Flow Rate			Equivalent Value		
(ml)	(h:mm:ss A/P)	(ml)	Total (min)	Interval (min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,250										
2,630					124.0		3.03E-04	26.2	0.43	0.86
2,010					124.0		3.03E-04	26.2	0.43	0.86
1,340					134.0		3.28E-04	28.3	0.46	0.93
780					112.0		2.74E-04	23.7	0.39	0.78
280	12:20:00 PM	500	25.00	5.00	100.0	2.4	2.45E-04	21.1	0.35	0.69
3,250										
2,810					88.0		2.15E-04	18.6	0.30	0.63
2,430					76.0		1.86E-04	16.1	0.26	0.53
2,010					84.0		2.05E-04	17.7	0.29	0.58
1,690					64.0		1.56E-04	13.5	0.22	0.44
1,410					56.0		1.37E-04	11.8	0.19	0.39
1,160					50.0		1.22E-04	10.6	0.17	0.35
880	12:55:00 PM	280	60.00	5.00	56.0	1.4	1.37E-04	11.8	0.19	0.39
		Constitution (Madium D				4 202 67			
Natural Moisture:		Consistence:	Medium Dense	Enter K _{satB} Value		1.3 Note: K ₂ is determ	1.32E-04	11.4 analyzing the Flow F	0.19 Rate vs. Flansed Ti	0.3
USDA Txt./USCS Class: Struct./% Pass. #200:		WT Depth: Init. Sat. Time:	Not Ecnountered	Data Logger No:		5		nal three to five stat	•	ine orapiraliu
*Glover, R. E. 1953. Flow fro			nn 69-71 in Theory an	d Problems of Water Per	colation (C N 72	anger ed \ LISBR '	The Cond for this	solution exists who	on the Dist from 1	the hottom of

Constant-Head	Borehole Perme	ameter Test	Solutio	on: R. E. Glover (De	ep WT or Imp	ermeable Laye	r)	File Name:		
Project Name	DC DPR Therapeutic C	enter - Geotech	Boring No:	IT-3/AP-3		Sc	olution and Terr	minology (R. E. G	lover solution)*	:
Project No	37_2962		Investigators:	DHS		K _{sat} = Q[sinh ⁻¹ (H	/r) - (r ² /H ² +1) ^{.5}	+ r/H]/(2πH ²) [Ba	asic Glover solu	tion]
Project Location:			Date:	2-4-2021		K _{satB} = QV[sinh ⁻¹	(H/r) - (r ² /H ² +1)	^{.5} + r/H]/(2πH ²) [Tempcorrecte	d]
Boring Depth	8 ft.	(Specify units)	WCU Base Ht. h:	10.0	cm***	K _{satB} : Saturate	d Hydraulic Cor	nduct. @ base Tm	p. T _B °C:	20
Boring Diameter:	17.78	cm	WCU Susp. Ht. S:	45.0	cm	Q: Rate of flow	w of water from	the borehole		
Boring Radius r:	8.89	cm	Const. Wtr. Ht. H:	55.0	cm	H: Constant h	eight of water i	n the borehole		
Soil Temperature T:	2	°C	H/r**:	6.2		r: Radius of t	he cylindrical be	orehole		
Dyn. Visc. @ T:	0.001674	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s			⁻ @ T °C/Dyn. Viso		
Reservoir Volume	Time (12 hr)	Volume Out		ed Time	Flow Rate			Equivalent Value		
(ml)	(h:mm:ss A/P)	(ml)	Total (min)	Interval (min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,250										
2,450					160.0		3.91E-04	33.8	0.55	1.1
1,970					96.0		2.35E-04	20.3	0.33	0.6
1,510					92.0		2.25E-04	19.4	0.32	0.6
1,150					72.0		1.76E-04	15.2	0.25	0.5
790					72.0		1.76E-04	15.2	0.25	0.5
450					68.0	1.7	1.66E-04	14.4	0.24	0.4
	2:08:00 PM		35.00	5.00						
Natural Moisture:	13.9	Consistence:	Medium Dense	Enter K _{satB} Value	:	1.7	1.73E-04	14.9	0.24	0.4
USDA Txt./USCS Class:	SM	WT Depth:	Not Encountered	Data Logger No:		5		analyzing the Flow F	•	me Graph and
Struct./% Pass. #200:	21.5	Init. Sat. Time:				averaging the the	results for the fir	hal three to five stat	bilized values.	
*Glover, R. E. 1953. Flow fro	om a test-hole located abo	ve groundwater level.	pp. 69-71. in: Theory an	d Problems of Water Per	colation. (C. N. Za	anger. ed.). USBR.	The Cond. for this	solution exists whe	en the Dist. from t	he bottom of

Constant-Head	Borehole Perme	ameter Test	Solutio	on: R. E. Glover (Dee	ep WT or Imp	ermeable Laye	er)	File Name:		
Project Name	DC DPR Therapeutic C	enter - Geotech	Boring No:	IT-4/AP-4		Sc	olution and Terr	minology (R. E. G	lover solution)*	*
Project No	37_2962		Investigators:	DHS		K _{sat} = Q[sinh ⁻¹ (H	l/r) - (r ² /H ² +1) ^{.5}	+ r/H]/(2πH ²) [Ba	asic Glover solu	tion]
Project Location:			Date:	2-4-2021		K _{satB} = QV[sinh ⁻¹	(H/r) - (r ² /H ² +1)	^{.5} + r/H]/(2πH ²) [Tempcorrecte	ed]
Boring Depth	8 ft.	(Specify units)	WCU Base Ht. h:	10.0	cm***	K _{satB} : Saturate	d Hydraulic Cor	nduct. @ base Tm	ιp. T _B °C:	20
Boring Diameter:	17.78	cm	WCU Susp. Ht. S:	45.0	cm	Q: Rate of flow	w of water from	the borehole		
Boring Radius r:	8.89	cm	Const. Wtr. Ht. H:	55.0	cm	H: Constant h	eight of water i	n the borehole		
Soil Temperature T:	2	°C	H/r**:	6.2		r: Radius of t	he cylindrical b	orehole		
Dyn. Visc. @ T:	0.001674	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s		-	[•] @ T [°] C/Dyn. Viso		-
Reservoir Volume	Time (12 hr)	Volume Out		d Time	Flow Rate			Equivalent Value		
(ml)	(h:mm:ss A/P)	(ml)	Total (min)	Interval (min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,250										
2,690					112.0	2.7	2.74E-04	23.7	0.39	0.78
2,100					118.0	2.9	2.89E-04	24.9	0.41	0.82
1,500					120.0	2.9	2.93E-04	25.4	0.42	0.83
930					114.0	2.8	2.79E-04	24.1	0.40	0.79
520	10:30:00 AM	410	25.00	5.00	82.0	2.0	2.00E-04	17.3	0.28	0.5
3,250										
2,860					78.0	1.9	1.91E-04	16.5	0.27	0.54
2,540					64.0	1.6	1.56E-04	13.5	0.22	0.44
2,300					48.0	1.2	1.17E-04	10.1	0.17	0.33
1,930					74.0	1.8	1.81E-04	15.6	0.26	0.53
1,570					72.0	1.8	1.76E-04	15.2	0.25	0.50
1,310	11:00:00 AM	260	55.00	5.00	52.0	1.3	1.27E-04	11.0	0.18	0.36
	19.2	Consistores	Von Stiff	Enter K _{satB} Value		1.6	1 645 04	13.9	0.23	
Natural Moisture:		Consistence:	Very Stiff				1.61E-04 nined by visually a	analyzing the Flow F		0.4
USDA Txt./USCS Class:		WT Depth	Not Encountered	Data Logger No:		5		hal three to five stat	•	
Struct./% Pass. #200: *Glover, R. E. 1953. Flow fro		Init. Sat. Time:	nn 69-71 in Theory an	d Problems of Water Per	colation (C N 7					the hottom of
	perm. layer is ≥2X the dept	-			-					

Constant-Head	Borehole Perme	ameter Test	Solutio	on: R. E. Glover (Dee	ep WT or Imp	ermeable Laye	r)	File Name:		
Project Name:	DC DPR Therapeutic C	enter - Geotech	Boring No:	IT-5/AP-5		Sc	olution and Teri	minology (R. E. G	lover solution)*	
Project No	37_2962		Investigators:	DHS		$K_{sat} = Q[sinh^{-1}(H)]$	/r) - (r ² /H ² +1) ^{.5}	+ r/H]/(2πH ²) [Ba	asic Glover solu	tion]
Project Location:			Date:	2-4-2021		$K_{satB} = QV[sinh^{-1}]$	(H/r) - (r ² /H ² +1)	^{.5} + r/H]/(2πH ²) [Tempcorrecte	d]
Boring Depth:	8 ft.	(Specify units)	WCU Base Ht. h:	10.0	cm***	K _{satB} : Saturate	d Hydraulic Cor	nduct. @ base Tm	p. T _B °C:	20
Boring Diameter:	17.78	cm	WCU Susp. Ht. S:	45.0	cm	Q: Rate of flow	w of water from	n the borehole		
Boring Radius r:	8.89	cm	Const. Wtr. Ht. H:	55.0	cm	H: Constant h	eight of water i	n the borehole		
Soil Temperature T:	2	°C	H/r**:	6.2		r: Radius of t	he cylindrical b	orehole		
Dyn. Visc. @ T:	0.001674	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s			r @ T °C/Dyn. Viso		5
Reservoir Volume	Time (12 hr)	Volume Out		d Time	Flow Rate			Equivalent Value		
(ml)	(h:mm:ss A/P)	(ml)	Total (min)	Interval (min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,250										
2,350					180.0		4.40E-04		0.62	1.2
1,470					176.0		4.30E-04	37.2	0.61	1.2
690	2:02:00 PM	780	15.00	5.00	156.0	3.8	3.81E-04	33.0	0.54	1.03
3,250	2:02:00 PM									
2,670	2:07:00 PM	580	20.00	5.00	116.0	2.8	2.84E-04	24.5	0.40	0.8
2,210	2:12:00 PM	460	25.00	5.00	92.0	2.2	2.25E-04	19.4	0.32	0.6
1,780	2:17:00 PM	430	30.00	5.00	86.0	2.1	2.10E-04	18.2	0.30	0.6
1,450	2:22:00 PM	330	35.00	5.00	66.0	1.6	1.61E-04	13.9	0.23	0.4
1,120	2:27:00 PM	330	40.00	5.00	66.0	1.6	1.61E-04	13.9	0.23	0.4
820	2:32:00 PM	300	45.00	5.00	60.0	1.5	1.47E-04	12.7	0.21	0.4
520	2:37:00 PM	300	50.00	5.00	60.0	1.5	1.47E-04	12.7	0.21	0.4
Natural Moisture:	18.8	Consistence:	Firm	Enter K _{satB} Value	:	1.5	1.52E-04	13.1	0.21	0.4
USDA Txt./USCS Class: Struct./% Pass. #200:	SM	WT Depth Init. Sat. Time:	Not Encountered	Data Logger No:		5	nined by visually a	analyzing the Flow F nal three to five stat		ime Graph and
*Glover, R. E. 1953. Flow fro the BH to the WT or an imp	om a test-hole located abo	ve groundwater level.								the bottom of

Constant-Head	Borehole Perme	ameter Test	Solutio	on: R. E. Glover (De	ep WT or Imp	ermeable Laye	er)	File Name:		
Project Name:	DC DPR Therapeutic C	enter - Geotech	Boring No:	IT-6/AP-6		So	olution and Ter	minology (R. E. G	lover solution)	k
Project No	37_2962		Investigators:	DHS		K _{sat} = Q[sinh ⁻¹ (H	l/r) - (r ² /H ² +1) ^{.5}	+ r/H]/(2πH ²) [B	asic Glover solu	tion]
Project Location:			Date:	2-4-2021		K _{satB} = QV[sinh ⁻¹	(H/r) - (r ² /H ² +1)) ^{.5} + r/H]/(2πH ²) [Tempcorrecte	ed]
Boring Depth	8 ft.	(Specify units)	WCU Base Ht. h:	10.0	cm***	K _{satB} : Saturate	d Hydraulic Cor	nduct. @ base Tm	p. T _B °C:	20
Boring Diameter:	17.78	cm	WCU Susp. Ht. S:	45.0	cm	Q: Rate of flow	w of water from	n the borehole		
Boring Radius r:	8.89	cm	Const. Wtr. Ht. H:	55.0	cm	H: Constant h	eight of water i	n the borehole		
Soil Temperature T:	2	°C	H/r**:	6.2		r: Radius of t	he cylindrical b	orehole		
Dyn. Visc. @ T:	0.001674	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m∙s			r @ T °C/Dyn. Vise		-
Reservoir Volume	Time (12 hr)	Volume Out	· · ·	d Time	Flow Rate			Equivalent Value		
(ml)	(h:mm:ss A/P)	(ml)	Total (min)	Interval (min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3,250										
3,190					12.0		2.93E-05		0.04	0.0
3,190					0.0		0.00E+00		0.00	0.0
3,190					0.0		0.00E+00		0.00	0.0
3,190					0.0		0.00E+00		0.00	0.0
3,190					0.0		0.00E+00		0.00	0.0
3,190			00.00		0.0		0.00E+00		0.00	0.0
3,190					0.0		0.00E+00		0.00	0.0
3,190	2:40:00 PM	0	40.00	5.00	0.0	0.0	0.00E+00	0.0	0.00	0.0
Natural Moisture:	15.8	Consistence:	Stiff	Enter K _{satB} Value		0.0	0.00E+00	0.0	0.00	0.0
USDA Txt./USCS Class:		WT Depth		Data Logger No:				analyzing the Flow F		
Struct./% Pass. #200:		Init. Sat. Time:	Hot Encountered	2010 2055CI 110		averaging the the	results for the fir	nal three to five stal	oilized values.	
*Glover, R. E. 1953. Flow fro			pp. 69-71. in: Theory and	d Problems of Water Per	colation. (C. N. Z	anger. ed.). USBR.	The Cond. for this	s solution exists whe	en the Dist. from	the bottom of
the BH to the WT or an imp		-								

APPENDIX C – Laboratory Testing

Laboratory Test Results Summary Plasticity Chart Grain Size Analysis

		Lab	orate	ory Te	estin	ig Si	ımm	ary					
		Depth (feet)	^MC (%)	Soil Type	Atterberg Limits			**Percent	Moisture - Density		CBR (%)		"O
Sample Location	Sample Number				LL	PL	PI	Passing No. 200 Sieve	Maximum Density (pcf)	Optimum Moisture (%)	0.1 in.	0.2 in.	#Organic Content (%)
B-1	S-4	8.5-10	11.8	SM	NP	NP	NP	32.4					
B-2	S-4	8.5-10	14.8	SM	NP	NP	NP	30.9					
B-3	S-2	2.5-4	23.6	СН	52	20	32	80.3					
B-4	S-4	8.5-10	13.8	SM	NP	NP	NP	25					
IT-1	S-5	8-10	14.8	SM	NP	NP	NP	33.3					
IT-2	S-5	8-10	14.5	SM	NP	NP	NP	36.9					
IT-3	S-5	8-10	13.9	SM	NP	NP	NP	21.5					
IT-4	S-5	8-10	18.2	CL	34	15	19	71.3					
IT-5	S-5	8-10	18.8	SM	NP	NP	NP	33.1					
IT-6	S-5	8-10	15.8	CL	27	12	15	57.5					
Notes: Definitions:		Content, Se	oil Type: U	SCS (Unifi					ASTM D2974-20 imit, PL: Plastic		ticity Inde	x, CBR: C	California
Project: Client:						37:2962 2/8/2021							
ECS	Office / ECS Mid-Atlantic I		Address 14026 Thunderbolt Place 100 Chantilly, VA 20151-				Office Number / Fax (703)471-8400 (703)834-5527						
	Tested by jvong					Checked by Htran			Approved by Date		Received		

LIQUID AND PLASTIC LIMITS TEST REPORT

	Location	Number	Depth (ft)	LL	PL	PI	%<#40	%<#200	AASHTO	USCS	Material Description
	B-1	S-4	8.5-10	NP	NP	NP	99.2	32.4	A-2-4	SM	Silty Sand Yellowish Brown
٠	B-2	S-4	8.5-10	NP	NP	NP	98.6	30.9	A-2-4	SM	Silty Sand Light Yellowish Brown
	B-3	S-2	2.5-4	52	20	32	98.8	80.3	A-7-6	СН	Fat Clay with Sand Yellowish Brown
•	B-4	S-4	8.5-10	NP	NP	NP	94.7	25.0	A-2-4	SM	Silty Sand Yellowish Brown
*	IT-1	S-5	8-10	NP	NP	NP	92.4	33.3	A-2-4	SM	Silty Sand Yellowish Brown
\otimes	IT-2	S-5	8-10	NP	NP	NP	99.8	36.9	A-4	SM	Silty Sand Light Yellowish Brown
	IT-3	S-5	8-10	NP	NP	NP	99.4	21.5	A-2-4	SM	Silty Sand Yellowish Brown
\diamond	IT-4	S-5	8-10	34	15	19	97.3	71.3	A-6	CL	Lean Clay with Sand Light Gray
\triangle	IT-5	S-5	8-10	NP	NP	NP	97.2	33.1	A-2-4	SM	Silty Sand Yellowish Brown
×	IT-6	S-5	8-10	27	12	15	90.1	57.5	A-6	CL	Sandy Lean Clay Pale Brown

Project: DC DPR Therapeutic Center - Geotech Client: DLR Group Project No.: 37:2962 Date Reported: 2/8/2021

Office / Lab ECS Mid-Atlantic LLC - Chantilly Address

14026 Thunderbolt Place Suite 100 Chantilly, VA 20151-3232 Office Number / Fax (703)471-8400 (703)834-5527

Tested by	Checked by	Approved by	Date Received
jvong	Htran	Dtran	2/3/2021

APPENDIX D – Supplemental Report Documents

French Drain Installation Procedure Undercut With Lean Concrete Diagram Swimming Pool Drainage Diagram Footing Zone of Influence Diagram Johnson Permeameter Schematic

JOHNSON PERMEAMETER

Exhibit 4 Form of Offer Letter & Bid Form (Attachment B to the RFP) (See following page)

Attachment B

[Offeror's Letterhead]

[Insert Date]

District of Columbia Department of General Services 2000 14th Street, NW Washington, D.C. 20009

- Attention: Pamela Ford Dickerson Contracting Officer
- Reference: Request for Proposals (RFP) DCAM-21-CS-RFP-0002 Construction Management At-Risk Services Therapeutic Recreation Center

Dear Ms. Dickerson:

On behalf of [INSERT NAME OF BIDDER] (the "Offeror"), I am pleased to submit this proposal in response to the Department of General Services' (the "Department" or "DGS") Request for Proposals (the "RFP") to provide Construction Management At-Risk Services for the Therapeutic Recreation Center. The Offeror has reviewed the RFP and the attachments thereto, any addenda thereto, and the proposed Form of Contract (collectively, the "Bid Documents") and has conducted such due diligence and analysis as the Offeror, in its sole judgment, has deemed necessary to submit the Offeror's Bid in response to the RFP. The Offeror's proposal, the Preconstruction Fee (as defined in 2.11.1), Construction Management Fee (as defined in 2.11.2) and the Maximum Cost of General Conditions (as defined in 2.11.3) are based on the Bid Documents as issued and assume no material alteration of the terms of the Bid Documents (collectively, the proposal, the Preconstruction Management Fee, and the Maximum Cost of General Conditions are referred to as the "Offeror's Bid.").

The Offeror's Bid is as follows:

A. Preconstruction Fee is:

\$_____\$

B. Construction Management Fee is:

The Offeror acknowledges and understands that Preconstruction Fee is a firm, fixed price and other than as permitted in the Form of Contract will not be subject to further adjustment. The Offeror further acknowledges that Twenty-Five Percent (25%) of the Construction Management Fee shall be at risk, and the Offeror shall be entitled such portion if such portions are earned in accordance with the Form of Contract.

C. The estimated cost of the Offeror's general conditions (the "Maximum Cost of General Conditions") is set forth below. The Maximum Cost of General Conditions consists of the following elements:

Cost of construction staff (only field staff are reimbursable)	\$
Fringe Benefits associated with field staff costs	\$
Payroll taxes and payroll insurance associated with construction staff costs	s \$
Staff costs associated with obtaining permits and approvals	\$
Site security, including but not limited to, perimeter fencing with fence	
wrap, cameras and Watchmen	\$
Out-of-house consultants	\$
Field office for CMAR including but not limited to:	\$
• Trailer purchase and/or rental	\$
• Field office installation, relocation and removal	\$
• Utility connections and charges during the Construction phase	\$
• Temporary Restrooms, hand-wash stations and lockers	\$
• Furniture	\$
• Office supplies	\$
Office equipment including but not limited to:	\$
Computer hardware and software	\$
• Copy & Fax machines	\$
• Telephone installation, system and uses charges	\$
Job radios	\$
Site cleanup, and cleanup of surrounding sidewalks and streets	\$
Local delivery and overnight delivery costs	\$
First aid facility	\$
BIM Cost (Coordination with A&E, software, seats, hardware)	\$
Other (please itemize)	\$
Total Maximum Cost of General Conditions \$	

The Offeror acknowledges and understands that the Maximum Cost of General Conditions will be incorporated into the contract and that the Offeror will not be permitted to exceed the Maximum Cost of General Conditions unless it first obtains the written approval of the Department.

D. In addition, the Offeror hereby represents that, based on its current rating with its surety, the indicated cost of a payment and performance bond is [INSERT PERCENTAGE].

Ms. Dickerson [DATE] Page 3

The Offeror's Bid is based on and subject to the following conditions:

1. The Offeror agrees to hold its proposal open for a period of at least one hundred and twenty (120) days after the date of the bid.

2. Assuming the Offeror is selected by the Department and subject only to the changes requested in paragraph 5, the Offeror agrees to enter into a contract with the Department on the terms and conditions described in the Bid Documents within ten (10) days of the notice of the award. In the event the Offeror fails to do so, the Department shall have the right to levy upon the Offeror's bid bond.

3. Both the Offeror and the undersigned represent and warrant that the undersigned has the full legal authority to submit this bid form and bind the Offeror to the terms of the Offeror's Bid. The Offeror further represents and warrants that no further action or approval must be obtained by the Offeror to authorize the terms of the Offeror's Bid. In addition to any other remedies that the Department may have at law or in equity, the Department shall have the right to levy upon Bidder's Bid Bond in the event of a breach of this paragraph 3.

4. The Offeror and its principal team members hereby represent and warrant that they have not: (i) colluded with any other group or person that is submitting a proposal in response to the RFP to fix or set prices; (ii) acted in such a manner so as to discourage any other group or person from submitting a proposal in response to the RFP; or (iii) otherwise engaged in conduct that would violate applicable anti-trust law.

5. The Offeror's proposal is subject to the following requested changes to the Form of Contract: **[INSERT REOUESTED CHANGES. OFFERORS ARE ADVISED THAT THE CHANGES SO IDENTIFIED SHOULD BE SPECIFIC SO AS TO PERMIT THE DEPARTMENT TO EVALUATE THE IMPACT OF THE REOUESTED CHANGES IN ITS REVIEW PROCESS. GENERIC STATEMENTS, SUCH AS "A MUTUALLY ACCEPTABLE CONTRACT" ARE NOT ACCEPTABLE. OFFERORS ARE FURTHER ADVISED THAT THE DEPARTMENT WILL CONSIDER THE REOUESTED CHANGES AS PART OF THE EVALUATION PROCESS.]**

6. The Offeror hereby certifies that neither it nor any of its team members have entered into any agreement (written or oral) that would prohibit any contractor, subcontractor or subconsultant that is certified by the District of Columbia Office of Department of Small and Local Business Enterprises as a Local, Small, Resident Owned or Disadvantaged Business Enterprise (collectively, "LSDBE Certified Companies") from participating in the work if another company is awarded the contract.

7. This bid form and the Offeror's Bid are being submitted on behalf of [INSERT FULL LEGAL NAME, TYPE OF ORGANIZATION, AND STATE OF FORMATION FOR THE OFFEROR].

Sincerely,

By:	
Name:	
Title:	